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Artist’s conception of neutrons flying

through matter. Low-energy neutrons (red)

scatter to new trajectories by interacting with

the atomic nuclei (blue). Since the nuclei are

small, the neutrons see mostly empty space

and scattering are rare. Cynthia L. Boone

created the computer art using Alias soft-

ware. The 14,000 nuclei were generated by

50 translations of an original lattice plane.
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the physics of various neutron-scattering processes, introduces the experimental techniques
and instruments that make neutron scattering so versatile, and discusses the single equation
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The accelerator neutron source at the Los Alamos neutron-scattering center is proving at least
as effective as traditional reactor sources, This article traces neutrons from their “birth” in
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neutron detectors. Electronic measurements of times of flight and scattering angles are also
discussed, as well as the mechanics of the user program at LANSCE.
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by Jill Trewhella

Small-angle neutron-scattering experiments provide evidence that calmodulin, a protein that
mediates calcium regulation of biological processes, is flexible in solution. Such experiments
also clearly show that calmodulin closes around one of its target enzymes as it stimulates that
enzyme’s catalytic function.
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by Roger Pynn

The precursors of many advanced materials arc disordered systems such as colloidal suspen-
sions and polymeric chains—sludge by another name. Neutron scattering can detect subtle
structures beneath the disorder that give advanced materials their extraordinary combinations
of strength, elasticity, and low density. By penetrating deep into metal and ceramic compo-
nents, neutrons also make possible the nondestructive measurement of residual strains.
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by Juergen Eckert and Phillip J. Vergamini

Catalyzing chemical reactions with metal atoms remains a mysterious art. But recent neutron-

~
scattering experiments on model systems are revealing the molecular mechanisms of’ cat-
alytic activity in astonishing detail, including how metal atoms loosen the bonds of hydrogen
molecules, an essential first step in hydrogenation reactions.

X-Ray and Neutron Crystallography—A Powerful Combination . . . . . 132

by Robert B. Von Dreele

Combining data from neutron and x-ray diffraction is the only way to resolve ambiguities in
the crystal structure of various materials, including high-temperature superconductors.
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A New Chapter in the Condensate Saga . . . . . . . . . . . . . . . 158

I by Richard N. Silver

Since 1938, theorists have attributed the unusual properties of superfluid helium-4 to the pres-
ence of a Bose condensate, an exotic state of matter in which all the condensed helium atoms
have exactly zero momentum. Although the Bose condensate cannot be observed directly, an
interpretation of neutron-scattering data according to a new first-principles theory of final-state
effects has at last confirmed its existence.

How Final-State Effects Were Really Calculated

Bayesian Inductive Inference, Maximum Entropy, and Neutron Scattering 180

by Devinderjit Singh Sivia

With its roots in Bayesian logic, the maximum entropy method of data analysis avoids the
“cookbook” approach to statistics. By treating all unknowns in a logically consistent man-
ner, it yields the “best” interpretation of the data at hand. It has been applied successfully to
neutron-scattering data and could even influence the design of neutron-scattering instruments.



what is neutron scattering? Why is it becoming more and more useful in
both basic and applied science? And why are materials scientists, in par-
ticular, very worried about its future in the United States? At first glance

the technique appears forbidding. You shine a large number of neutrons on a sam-
ple, but—because neutrons have no electric charge-only a very small fraction are
scattered. Therefore generating measurable signals requires a great deal of ingenuity.
Also, the neutrons are expensive to produce and are available at only a small number
of specialized facilities. It seems like the last technique to choose-except that its
results are so valuable. For many questions in condensed-matter physics, in biology,
in chemistry, and in the study of modem synthetic materials, neutron scattering is the
only technique that provides answers.

Unlike x-rays, neutrons “see” light and heavy elements equally well, interact
with the magnetic moments of electrons, and detect atomic vibrations as well as
average atomic positions. These properties make neutrons a unique and extremely
versatile probe of material structure and dynamics. A look at the table of contents
will convince you—measurements of the structure of high-temperature superconduc-
tors, of the Bose condensate in liquid helium, of the change in shape of the protein
calmodulin as it mediates involuntary muscle contraction, of the catalytic effect of
metal atoms on the dissociation of molecular hydrogen, of the fractal structures of
precursors to today’s materials, of the layered structures of polymer films, of residual
strains in metals and ceramics—and these diverse topics are a sampling of the work
at only one facility. High-intensity neutron beams, high-resolution spectrometers, and
computerized data acquisition and analysis systems are opening a wide range of phe-
nomena to more precise study, especially in materials technology and other fields tied
to economic growth.

Although the promise of neutron scattering is growing, its future in the United
States is uncertain. At present, all but two neutron-scattering centers are located at
aging nuclear reactors whose budgets are escalating every year to pay, not for re-
search and upgrades, but for enhanced safety. Moreover, access to those facilities has
not been easy in the past. Even now, few university scientists use the technique—
many fewer than in Europe. But a change is in the works. In the early eighties a
user program began at the Intense Pulsed Neutron Source at Argonne National Lab-
oratory, and in 1987 the Los Alamos Neutron Scattering Center (LANSCE) officially
opened its doors to users from academia and industry. (Both facilities house acceler-
ator sources, which produce pulsed neutron beams by a nuclear reaction called spal-
lation.) A cold-neutron research center is being built at the National Institute of Stan-
dards and Technology, and a spectrometer upgrade at the Brookhaven High-Flux Re-
actor is planned. The response to these initiatives has been gratifying. For example,
more than 140 outside users mounted experiments at LANSCE last year—and this
year’s participation is even greater. A technique that was practiced by a small com-
munity of professionals is now accessible to “amateurs” from industry and academia.

Experience at the Los Alamos facility is proving that data obtained at pulsed
neutron sources can compete with data obtained at reactors. Five years ago when
several new spallation sources were just coming on line, conventional wisdom said



that small-angle neutron scattering, which requires intense beams to measure the
sizes and shapes of biological macromolecules and colloidal particles, could be done
well only at reactors. Today small-angle experiments work as well at LANSCE as at
the best reactor sources in the world, except for the very smallest angles. Powder-
diffraction experiments here are also highly effective; for example, polycrystalline
samples weighing less than 50 milligrams have yielded excellent data. And Los
Alamos researchers are leading the way in using spallation sources for reflectome-
try, one of the newest applications of neutron scattering. These successes reflect the
high neutron flux available here as well as the efficient utilization of that flux through
innovative spectrometer design. LANSCE and other pulsed sources are demonstrating
that they can more than fulfill their original promise.

With all its successes the Los Alamos source is not without problems. Beam
availability during 1990 has so far been less than last year because of budget cuts,
investment in environmental and safety precautions, and some accelerator problems.
Also, though LANSCE generates a higher peak flux than any other spallation source,
it has yet to achieve the design value. Nevertheless this year’s users report they are
getting better data in less time than they could elsewhere.

What of the future? Since neutron scattering is a signal-limited technique,
progress depends on building higher-intensity neutron sources. The U.S. neutron-
scattering community plans to build a state-of-the-art research reactor, the Advanced
Neutron Source, which will deliver five times greater neutron fluxes than today’s
most powerful research reactors. The new reactor, still in the design stage, should
begin operation around the turn of the century. Construction will cost about one
billion dollars, and increasingly stringent safety regulations will make it very costly
to run. The decision to build the advanced reactor was made several years ago, be-
fore spallation sources had proven their worth. We asked Roger Pynn, the director of
LANSCE, whether in light of recent progress he thought the next-generation facility
ought to be a spallation source. His answer: “If societal concerns should make it im-
practical to build and operate a research reactor, then an advanced spallation source
could meet the needs of the community without raising as many safety and environ-
mental issues, But, for a balanced program, the country needs sources of both types.”
Whatever happens in the long run, it is clear from the presentations in this issue that
neutron scattering is a fertile and expanding field and that LANSCE is providing in-
spiration for the future in the areas of technical innovation, opportunities for young
people, outreach to the larger scientific community, and tangible scientific results.

The editors thank all the authors and the numerous other scientists who con-
tributed their thought and energy to the contents of this volume. It was a pleasure for
us to learn about the technically difficult but thoroughly absorbing world of neutron
scattering.







Neutron Scattering-A Primer 

the light atoms in the soft tissue of our 
jowls do not stop x rays as well as 
the heavy mercury atoms in the dental 
amalgam used to fill teeth. Although 
this phenomenon is useful to the dental 
profession, it is often an embarrassment 
for scientists measuring atomic posi- 
tions. 

X rays are scattered by the electrons 
surrounding the nucleus of an atom. 
As a result, heavy atoms with many 
electrons (such as mercury) scatter x 
rays more efficiently than light atoms 
(such as oxygen or, worse, hydrogen). 
Thus, x rays pass right through light 
materials without being greatly attenu- 
ated or deflected. It is for this reason 
that the structure of the much-heralded 
high-temperature superconductors was 
not determined by x-ray diffraction- 
in spite of the fact that most university 
physics departments worldwide have an 
x-ray machine. One of the first high- 
temperature superconductors discov- 
ered contained yttrium and copper, both 
of which are heavy ahd scatter a rel- 
atively large percentage of the x rays 
incident on a sample. Unfortunately, 
the superconductors also contained oxy- 
gen, whose feeble scattering of x rays 
is swamped by that of its heavy neigh- 
bors. It was impossible to determine the 
positions of the oxygen atoms using x- 
ray diffraction because the x rays passed 
through the superconductor almost with- 
out noticing the oxygen. 

We might try to find atomic posi- 
tions by "seeing" with electron beams. 
After all, quantum mechanics tells us 
that particles have wave properties, 
and the wavelength of electrons can 
easily be matched to interatomic dis- 
tances by changing the electron en- 
ergy. However, as anyone who has 
ever rubbed a balloon on the family cat 
knows, the interaction between electrical 
charges is strong. Not surprisingly then, 
a charged particle, such as an electron 
or a positron, does not travel far through 
solids or liquids before it is attracted or 

2 

Â ¥  Â 80 Â 

- Â 
Â ** a Â 

X Rays 

0 20 40 60 80 
Atomic Number 

NEUTRON, ELECTRON, AND X-RAY PENETRATION DEPTHS 

Fig. 1. The plot shows how deeply a beam of electrons, x rays, or thermal neutrons penetrates a 
particular element in its solid or liquid form before the beam's intensity has been reduced by a 
factor of i, that is, to about 37 percent of Its original Intensity. The neutron data are for neutrons 

having a wavelength of 1.4 angstroms (1.4 x 1 0 ' ~  meter). 

repelled by the electrons already in the 
matter. This makes electrons unsuitable 
for looking inside bulk materials: they 
suffer from the same opacity problem 
as light, and specially prepared, thin 
samples are required for electron mi- 
croscopy. 

Neutron Scattering 

What about neutrons? They have no 
charge, and their electric dipole mo- 
ment is either zero or too small to be 
measured by the most sensitive of mod- 
em techniques. For these reasons, neu- 
trons can penetrate matter far better than 
charged particles. Furthermore, neutrons 
interact with atoms via nuclear rather 

than electrical forces, and nuclear forces 
are very short range-of the order of 
a few fermis (1 fermi = 1015  meter). 
Thus, as far as the neutron is concerned, 
solid matter is not very dense because 
the size of a scattering center (nucleus) 
is typically 100,000 times smaller than 
the distance between such centers. As a 
consequence, neutrons can travel large 
distances through most materials with- 
out being scattered or absorbed (see the 
opening illustration to "Putting Neu- 
trons in Perspective"). The attenuation, 
or decrease in intensity, of a beam of 
low-energy neutrons by aluminum, for 
example, is about 1 percent per millime- 
ter compared with 99 percent or more 
per millimeter for x rays. Figure 1 illus- 
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SCATTERING INTERACTIONS 

Fig. 2. Beams of neutrons, x rays, and electrons interact with material by different mechanisms. 
X rays (blue) and electron beams (yellow) both interact with electrons in the material; with x rays 

the interaction is electromagnetic, whereas with an electron beam it is electrostatic. Both of 
these interactions are strong, and neither type of beam penetrates matter very deeply. Neutrons 
(red) interact with atomic nuclei via the very short-range strong nuclear force and thus penetrate 
matter much more deeply than x rays or electrons. If there are unpaired electrons in the material, 
neutrons may also interact by a second mechanism: a dipole-dipole interaction between the 
magnetic moment of the neutron and the magnetic moment of the unpaired electron. 

trates this point for other atoms and for 
electrons as well as x rays and neutrons. 

Like so many things in life, the neu- 
tron's penetrating power is a two-edged 
sword. On the plus side, the neutron 
can penetrate deep within a sample even 
if it first has to pass through a container 
(necessary, for example, if the sample 
is a fluid or has to be kept at low tem- 
peratures or high pressures). The corol- 
lary is that neutrons are only weakly 

scattered once they do penetrate. Also, 
detection of a subatomic particle in- 
volves the observation of that particle's 
interaction with some other particle, so 
neutron detection requires a certain in- 
genuity (in practice, detectors make use 
of one of the few atoms, such as boron, 
helium-3, or lithium, that absorb neu- 
trons strongly to produce ionizing radia- 
tion). To make matters worse, available 
neutron beams inherently have low in- 

tensities. X-ray instruments at synchro- 
tron-radiation facilities can provide 
fluxes of 1018 photons per second per 
square millimeter compared with lo4 
neutrons per second per square millime- 
ter in the same energy bandwidth for 
powerful neutron-scattering instruments. 

The combination of a weak interac- 
tion and low fluxes makes neutron scat- 
tering a signal-limited technique, which 
is practiced only because it provides in- 
formation on the structure of materials 
that cannot be obtained by other means. 
This constraint means that no generic 
instrument can be designeu to examine 
all aspects of neutron scattering. In- 
stead, a veritable zoo of instruments has 
arisen with each species specializing in 
a particular aspect of the scattering phe- 
nomenon. 

In spite of its unique advantages, neu- 
tron scattering is only one of a battery 
of techniques for probing the struc- 
tures of materials. All of the techniques, 
such as x-ray scattering and electron mi- 
croscopy, are needed if scientists are to 
understand the full range of structural 
properties of matter. In most cases, the 
different methods used to probe material 
structure give complementary informa- 
tion because the nature of the interaction 
between the radiation and the sample 
are different. For example, neutrons in- 
teract with nuclei, whereas x rays and 
electrons "see" only the electrons in 
matter (Fig. 2). To a certain extent the 
method of choice depends on the length 
scale of the structure to be investigated 
(Fig. 3). When two techniques address 
the same scale, additional information, 
such as the size and chemical composi- 
tion of the sample, is required to choose 
the optimal technique. 

Scattering by a 
Single Fixed Nucleus 

The scattering of neutrons by nuclei 
is a quantum-mechanical process. For- 
mally, the process has to be described in 
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Neutron Scattering-A Primer 

STRUCTURE PROBES 

Â¥^Fig 3. A variety of techniques can be 
used to probe structure, but one of the 
main determining factors in the choice of a 
technique is the length scale of the structure 
being examined. Techniques range from 
neutron diffraction, which can be used to 
study atomic structure with length scales of 
1 0 "  to 1 0 '  meter, to optical microscopy, 
which can be used to study bacteria and 
crystalline grain structures at much greater 
length scales. 

terms of the wave functions of the neu- 
tron and the nucleus. The wave function 
of the neutron, as its name suggests, has 
the form of a wave-that is, a function 
that oscillates sinusoidally in space and 
time. The square of the amplitude of 
this wave at any point gives the proba- 
bility that the neutron will be found at 
that point. It does not matter whether 
we talk about the wave that represents 
the neutron or the probability that a par- 
ticle called the neutron is at a given 
location. Both descriptions will give 
rise to the same mathematics and are, 
therefore, equivalent. Sometimes it is 
convenient to refer to the neutron as a 
wave because the picture thus conjured 
is easier to understand. At other times it 
is more useful to think of the neutron as 
a particle. We can switch from one de- 
scription to the other at will, and if we 
do the mathematics correctly, we will 
always get the same answer. 

The neutrons used for scattering ex- 
periments usually have energies simi- 
lar to those of atoms in a gas such as 
air. Not surprisingly, the velocities at 
which they move are also comparable 
with those of gas molecules-a few 
kilometers per second. Quantum me- 
chanics tells us that the wavelength of 
the neutron wave is inversely propor- 
tional to the magnitude of the neutron 
velocity v = lv (throughout the text 
we will use a bold variable to represent 
a vector quantity and a nonbold ver- 

sion of the same variable to represent 
the corresponding magnitude). For the 
neutrons used in scattering experiments, 
the wavelength, A, turns out to be a few 
angstroms (1 angstrom = 1 0 ' ~  meter). 
It is often useful to work in terms of the 
so-called neutron wave vector, k ,  which 
is a vector of magnitude k = 27r/A that 
points along the neutron's trajectory. 
The vectors k and v are collinear and 
related by the equation 

hk - = mv, 
27r 

cross section 

The effective area presented by a nucleus 
to an incident neutron. One unit for cross 
section is the barn, as in "can't hit the side of 
a barn!" 

where h is Planck's constant, m is the 
mass of the neutron (1.67495 x 
kilogram), and mv is the momentum of 
the neutron. 

The scattering of a neutron by a sin- 
gle nucleus can be described in terms of 
a cross section a, measured in barns 
(1 barn = square meter), that 
is equivalent to the effective area pre- 
sented by the nucleus to the passing 
neutron. If the neutron hits this area, it 
is scattered isotropically, that is, with 
equal probability in any direction. Why 
isotropically? The range of the nuclear 
potential is tiny compared to the wave- 
length of the neutron, and so the nu- 
cleus is effectively a point scatterer. 
(X rays, on the other hand, do not scat- 
ter isotropically because the electron 
clouds around the atom scattering the x 
rays are comparable in size to the wave- 
length of the x rays.) 

Suppose that at an instant in time we 
represent neutrons incident on a fixed 
nucleus by a wave function which 
is a plane wave of unit amplitude ex- 
pressed in terms of the position vector 
r. Note that the square modulus of this 
wave function is unity, which means 
the neutron has the same probability of point scatterer 
being found anywhere in space but has 
definite momentum mv = hk/27r. The An object that scatters incident radiation 
nodes of the wave-that is, the points isotropically by virtue of being very small 
at which the phase k . r is equal to n v ,  compared with the wavelength of the radia- 
where n is an integer-are the straight tion. 
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NEUTRON SCATTERING 
FROM A FIXED POINT 

Fig. 4. A neutron beam incident on a single 

scattering center and traveling in the x 
direction can be represented as a plane wave 

elkx with unit amplitude. Because the neutron 

sees the scattering center (a nucleus) as a 
point, the scattering will be Isotropic. As a 

result, the scattered neutron beam spreads 

out in spherical wavefronts (here drawn as 

circles) of amplitude b/ r .  The 1 / r  part of 

this amplitude factor, when squared to get 
2 

intensity, accounts for the 1 / r  decrease in 

intensity with distance that occurs as the 

scattered wavefront grows in size. Because 

we have here taken the scattering center to be 

rigidly fixed, the interaction is elastic, there is 

no exchange of energy, and the incident and 

scattered wave vectors both have magnitude 

k. (To be rigorous, we should have included 

the time dependence eiw'. But since the 

scattering is elastic, this factor is the same for 

the incident and scattered waves and cancels 

out of relative expressions, such as the one 

for the cross section.) 

scattering length 

A measure of the strength of the neutron- 

nucleus interaction, denoted by b and related 

to the cross section cr by o- = 471-b2. 

isotopic labeling 

A technique that takes advantage of the 

considerable variation in scattering cross 

section among isotopes. By substituting one 

isotope for another (of either the same or a 

different element), the scattering from those 

constituents containing the substitute may 

be varied to reveal their positions relative to 

other constituents. 

- 
Incident at r = 0  
Plane Wave ei^ 

Scattered Circular 

x 

Scatterina Center 

wavefronts shown in Fig. 4 (for a wave 
traveling in the x direction). In light 
of our earlier discussion, we ought to 
choose the amplitude of the neutron 
wave function (the constant multiplying 
the exponential) so that the amplitude 
squared gives a probability of finding 
a neutron at a position r that is con- 
sistent with the number of neutrons in 
the beam we are using. However, since 
we shall be interested only in the ratio 
of the amplitudes of the incident and 
scattered neutron waves, we can set the 
amplitude of the incident wave to unity 
for the moment. 

What is the amplitude of the neutron 
wave scattered by the nucleus? That de- 
pends on the strength of the interaction 
between the neutron and the nucleus. 
Because the scattered neutron wave 
is isotropic, its wave function can be 
written as (-b/r)eikr if the scattering 
nucleus is at the origin of our coordi- 
nate system. The spherical wavefronts 
of the scattered neutron are represented 
by the circles spreading out from the 
nucleus in Fig. 4. The factor (1/r) in 
the wave function of the scattered neu- 
tron takes care of the inverse square 
law that applies to all wave motions: 
the intensity of the neutron beam, given 
by the square of the amplitude of the 

wave function, decreases as the inverse 
square of the distance from the source. 
In this case, the source is the scatter- 
ing nucleus. The constant b, referred to 
as the scattering length of the nucleus, 
measures the strength of the interaction 
between the neutron and the scattering 
nucleus. The minus sign in the wave 
function means that b is a positive num- 
ber for a repulsive interaction between 
neutron and nucleus. 

For the type of collision being imag- 
ined here, the energy of the neutron is 
too small to change the internal energy 
of the scattering nucleus, and because 
we imagine the nucleus to be fixed, the 
neutron cannot impart kinetic energy. 
Thus, the scattering occurs without any 
change of the neutron's energy and is 
said to be elastic. Because the neu- 
tron energy is unchanged by a nuclear 
collision, the magnitude of its velocity 
and thus of its wave vector is also un- 
changed, and the same k appears in the 
wave function of the incident and the 
scattered neutrons. 

What is the relationship between scat- 
tering length, b, and the cross section, 
a, both of which are a measure of the 
strength of the scattering interaction? 
The cross section, a, an area, is related 
to b, a length, by the simple relation 
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elastic scattering 

Scattering with no change in the energy of 
the incident neutron; or, in terms of the wave 
vector of the neutron, scattering in which the 
direction of the vector changes but not its 
magnitude. 

o- = 47rb2-as if the scattering length 
were half the radius of the nucleus as 
seen by the neutron. 

For a few nuclei the scattering length, 
b, varies with the energy of the inci- 
dent neutrons because compound nu- 
clei with energies close to those of ex- 
cited nuclear states are formed during 
the scattering process. This resonance 
phenomenon gives rise to complex val- 
ues of b: the real part corresponds to 
scattering of the neutrons, whereas the 
imaginary part corresponds to absorp- 
tion of the neutron by a nucleus. Usu- 
ally, such resonant effects occur at neu- 
tron energies greater than those used to 
probe the structure of matter. In the ma- 
jority of cases of interest to scientists 
doing neutron scattering, b is a real and 
energy-independent quantity. However, 
b has to be determined experimentally 
for each nuclear isotope because, unlike 
the equivalent quantity for x rays, the 
scattering length for neutrons cannot be 
calculated reliably in terms of funda- 
mental constants. 

Also unlike x rays, neutrons interact 
with atoms of an element in a manner 
that does not seem correlated with the 
atomic number of the element (as is 
evident in Fig. 1). In fact, the neutron's 
interaction with a nucleus of an atom 
varies from one isotope to another. For 

example, hydrogen and deuterium, both 
of which interact weakly with x rays, 
have neutron scattering lengths that are 
relatively large and quite different. The 
differences in scattering lengths from 
one isotope to another can be used in 
various isotopic-labeling techniques 
to increase the amount of information 
available from a particular neutron- 
scattering experiment. We shall discuss 
isotopic labeling in more detail in the 
section on small-angle scattering. 

Scattering of Neutrons by Matter 

To work out how neutrons are scat- 
tered by matter, we need to add up the 
scattering from each of the individual 
nuclei. This is a lengthy and not partic- 
ularly instructive quantum-mechanical 
calculation. Fortunately, the details of 
the calculation are not very important. 
The result is, however, both simple and 
appealing. 

When neutrons are scattered by mat- 
ter, the process can alter both the mo- 
mentum and the energy of the neutrons 
and the matter. The scattering is not 
necessarily elastic as it is for a single, 
rigidly fixed nucleus because atoms in 
matter are free to move to some ex- 
tent. They can therefore recoil during a 
collision with a neutron, or if they are 
moving when the neutron arrives, they 
can impart or absorb energy just as a 
baseball bat does. 

As is usual in a collision, the total 
momentum and energy are conserved: 
when a neutron is scattered by mat- 
ter, the energy lost by the neutron, e, 
is gained by the sample. From Eq. 1 it 
is easy to see that the amount of mo- 
mentum given up by the neutron during 
its collision, the momentum transfer, is 
&Q = &(k - kt), where k is the wave 
vector of the incident neutrons and kt 
is that of the scattered neutrons. The 
quantity Q = k - kt is known as the 
scattering vector, and the vector rela- 
tionship between Q, k, and kt can be 

inelastic scattering 

Scattering in which exchange of energy and 
momentum between the incident neutron and 
the sample causes both the direction and the 
magnitude of the neutron's wave vector to 
change. 
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SCATTERING TRIANGLES 
(a) Elastic Scattering (kl= k )  /" 

Fig. 5. Scattering triangles are depicted here 
.&ei\?9 /^ 

for both (a) an elastic scattering event in 
ff-y 

which the neutron is deflected but the neutron 

does not lose or gain energy (so that k' = k)  
and (b) Inelastic scattering events in which 
the neutron either loses energy (k' < k) or Incident 20 
gains energy (k' > k) during the interaction. - Direction -- - - 

Q\ 
k 

In both elastic and inelastic scattering events, 

the neutron is scattered through the angle 

20, and the scattering vector is  given by the 

vector relationship Q = k - k'. For elastic 

scattering, a little trigonometry shows (lower 

triangle in (a)) that 0 = 4-n- sin @/A. 

neutron-scattering law 

The intensity of scattered neutrons as a func- 

tion of the momentum and energy transferred 

to the sample during the scattering. The 

scattering law is written as /(Q,e), where $ 2  

is the momentum transfer, and e is the en- 

ergy transfer (see Eq. 3 in "The Mathematical 

Foundations of Neutron Scattering"). 

012 
sin 9 = - k 

4itsin 0 Q=2ks in9=-  
Â¥ 

(b) Inelastic Scattering (k'# k )  

Neutron Loses Energy 
(k'c k)  

Neutron Gains Energy 
(k'>k) 

displayed pictorially in the so-called 
scattering triangle (Fig. 5). This trian- 
gle also emphasizes that the magnitude 
and direction of Q is determined by the 
the magnitudes of the wave vectors for 
the incident and scattered neutrons and 
the angle 20 through which a neutron 
is deflected during the scattering pro- 
cess. Generally, 20 is referred to as the 
scattering angle. For elastic scattering 
(Fig. 5a) k = k t ,  so e = 0, and a.little 
trigonometry applied to the scattering 
triangle shows that Q = 47r sin 0/A. 

In all neutron-scattering experiments, 
scientists measure the intensity of neu- 

trons scattered by matter (per incident 
neutron) as a function of the variables Q 
and 6. This scattered intensity, denoted 
I(Q, e), is often referred to colloquially 
as the neutron-scattering law for the 
sample. 

In a complete and elegant analysis, 
Van Hove showed in 1954 that the scat- 
tering law can be written exactly in 
terms of time-dependent correlations 
between the positions of pairs of atoms 
in the sample (see "The Mathematical 
Foundations of Neutron Scattering" for 
a more detailed discussion). Van Hove's 
result implies that I(Q, e )  is simply pro- 

Los Alamos Science Summer 1990 



Neutron Scattering-A Primer 

portional to the Fourier transform of a 
function that gives the probability of 
finding two atoms a certain distance 
apart. It is the simplicity of this result 
that is responsible for the power of neu- 
tron scattering. If nature had been un- 
kind and included correlations between 
triplets or quadruplets of atoms in the 
expression for the scattering law, neu- 
tron scattering could never have been 
used to probe directly the structure of 
materials. 

Of course, we have not yet explained 
how one may measure the intensity 
of scattered neutrons as a function of 
Q and e, but if we can do that, Van 
Hove's result provides a way of relating 
the intensity of the scattered neutrons 
to the relative positions and the relative 
motions of atoms in matter. In fact, Van 
Hove's formalism can be manipulated 
(see "The Mathematical Foundations 
of Neutron Scattering") to reveal scat- 
tering effects of two types. The first is 
coherent scattering in which the neutron 
wave interacts with the whole sample 
as a unit so that the scattered waves 
from different nuclei interfere with each 
other. This type of scattering depends 
on the relative distances between the 
constituent atoms and thus gives infor- 
mation about the structure of materials. 
Elastic coherent scattering tells us about 
the equilibrium structure, whereas in- 
elastic coherent scattering (with e + 0) 
provides information about the collec- 
tive motions of the atoms, such as those 
that produce vibrational waves in a crys- 
talline lattice. In the second type of 
scattering, incoherent scattering, the 
neutron wave interacts independently 
with each nucleus in the sample so that 
the scattered waves from different nuclei 
don't interfere. Rather the intensities 
from each nucleus just add up. Inco- 
herent scattering may, for example, be 
due to the interaction of a neutron wave 
with the same atom but at different po- 
sitions and different times, thus provid- 
ing information about atomic diffusion. 

Diffraction, or Bragg Scattering 

The simplest type of coherent neu- 
tron scattering to understand is diffrac- 
tion. Suppose that atoms are arranged at 
fixed positions on a lattice (such as the 
two-dimensional portion of the lattice 
shown in Fig. 6) and a beam of neu- 
trons is fired at that lattice. We imagine 
that all of the neutrons move on paral- 
lel paths and have the same velocity, so 
that there is only one value for the inci- 
dent wave vector, k. Because the atoms 
and their associated nuclei are imagined 
to be fixed, there is no change in the 
neutron's energy during the scattering 
process; that is, the scattering is elastic 
and k' = k. 

As the incident neutron wave arrives 
at each atom. the atomic site becomes 
the center of a scattered spherical wave 
that has a definite phase relative to all 
other scattered waves. In two dimen- 
sions, it is as if a handful of pebbles 
have been thrown into a calm pond. 
At the point where each pebble strikes 
the pond (the atomic site), a circular 
wave spreads outwards. Because the 
waves from each site overlap there will 
be places where the disturbances from 
different waves reinforce one another 
and other places where they cancel out. 
This is the phenomenon of interference. 

As the waves spread out from a reg- 
ular array of sites, the individual distur- 
bances will reinforce each other only in 
particular directions. In other words, if 
we observe the wave motion at some 
distance from the lattice, we will see 
waves (scattered neutrons) traveling in 
well-defined directions (Pig. 6). These 
directions are closely related to the sym- 
metry and spacing (or lattice) of the 
scattering sites-a hexagonal grid will 
generate a different set of wavefronts 
than a square grid. Consequently, one 
may use a knowledge of the directions 
in which various incident waves are 
scattered to deduce both the symmetry 
of the lattice and the distances between 

coherent scattering 

Scattering in which an incident neutron wave 
interacts with all the nuclei in a sample in 
a coordinated fashion; that is, the scattered 
waves from all the nuclei have definite relative 
phases and can thus interfere with each 
other. 

incoherent scattering 

Scattering in which an incident neutron wave 
interacts independently with each nucleus in 
the sample; that is, the scattered waves from 
different nuclei have random, or indeterminate, 
relative phases and thus cannot interfere with 
each other. 

diffraction 

A type of scattering in which coherently 
scattered waves interfere. 
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DIFFRACTION FROM A LATTICE 

Fig. 6. As a neutron (represented in the 

figure by a plane wave) passes through a 

lattice of regularly spaced scattering centers 

(rather than the single scattering center 

of Fig. 4), the spherical wavefronts that 

represent scattered neutrons will overlap and 

interfere with each other. In those directions 

in which the interference is constructive, 

scattered neutrons may be measured. The 

figure depicts such constructive interference 

in two dimensions with planar wavefronts 

represented as lines, spherical wavefronts 

as colored circles, and the scattering centers 

as small circles. To simplify the diagram, 

the scattering is shown only for four centers 

(solid black) in each of the two rows of 
scattering planes. Also, color is used to 

relate each incident wavefront to the scattered 
wavefronts that have so far been generated 

by it. Thus, the incident red wavefront 

has passed over and scattered from four 
scattering centers in Scattering Plane 1; 

the orange wavefront has passed over and 

scattered from these scattering centers plus 

the leftmost scattering center in Scattering 

Plane 2;  the yellow wavefront has passed over 

all eight scattering centers in both planes. For 

constructive interference to take place, Q must 

be perpendicular to the two scattering planes, 

and the condition Q - (r, - rk) = Qd = 2 m  
must be satisfied, where lrj - rkl = d is the 

distance between the two scattering planes 

and n is an integer. Combining this condition 

with 0 = 47rsin 0 / A  (from Fig. 5a) yields 

Bragg's law: n\ = 2d sin 0. 

' f Diffracted 
Plane Wave 

Sea f i b  ring PI ne 1 

atoms. The type of scattering we have 
just described is called diffraction. 

Because diffraction is an elastic, co- 
herent scattering process, Van Hove's 
formulation of the scattering law re- 
duces to a simple form. For a three- 
dimensional lattice with one isotope, the 
scattering law can be written (see "The 
Mathematical Foundations of Neutron 

Scattering") as 

m), 
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where r, and rk represent the positions 
of atoms labeled j and k in the lattice 
and bcoh is the coherent scattering length 
of those atoms. 

Equation 2 is the scattered intensity 
that would be measured in a neutron- 
diffraction experiment with a real crys- 
tal, and is often called the structure fac- 
tor, S (Q). As we count through the 
atoms of a lattice performing the sum 
in Eq. 2, the real and imaginary parts 
of the exponential function both take 
values that are distributed essentially at 
random between plus and minus one. 
Because many atoms are involved, the 
sum usually averages to zero, except at 
certain unique values of Q. 

Obviously, the values of Q for which 
the structure factor, S(Q), is nonzero are 
rather special, and it is easy to imagine 
that not many values of Q satisfy this 
condition. Further, those values are in- 
timately related to the structure of the 
crystal because the vectors rj - r k  in 
Eq. 2 represent the set of distances be- 
tween different atoms in the crystal. 

We can determine the values of Q 
at which S(Q) is nonzero and at which 
diffraction occurs by consulting Fig. 6. 
Suppose Q is perpendicular to a plane 
of atoms such as Scattering Plane 1 in 
this figure. If the value of Q is any in- 
tegral multiple of 2 - ~ / d ,  where d is the 
distance between parallel, neighboring 
planes of atoms (Scattering Planes 1 
and 2 in Fig. 6), then Q . (rj - rk)  is 
a multiple of 27~ and S (Q) is nonzero 
because each exponential term in the 
sum in Eq. 2 is unity. Thus, Q must be 
perpendicular to planes of atoms in the 
lattice and its value must be an integral 
multiple of 2 4 d .  For values of Q that 
do not satisfy this condition, S(Q) = 0, 
and there is no scattering. 

The values of Q at which neutron 
diffraction occurs are governed by the 
same law that was discovered for x 
rays in 1912 by William and Lawrence 
Bragg, father and son. To see this, we 
apply the condition described above 

(Q = n(27r/d), where n is an integer) 
to the scattering triangle for elastic scat- 
tering. Then using the relationship be- 
tween Q,  6, and A shown in Fig. 5, the 
condition can be rewritten as 

This equation, called Bragg's law, re- 
lates the scattering angle, 20, to the in- 
terplanar spacing in a crystalline sample. 

Bragg's law can also be understood in 
terms of the path-length difference be- 
tween waves scattered from neighboring 
planes of atoms (Fig. 7). For construc- 
tive interference to occur between waves 
scattered from adjacent planes, the path- 
length difference must be a multiple 
of A, the wavelength. Applying this 
condition to Fig. 7 immediately yields 
Bragg's law in the form given in Eq. 3. 
Many of the results described in the ar- 
ticles in this issue will fall back on this 
point of view. 

Diffraction, or Bragg scattering, as 
it is sometimes called, may occur for 
any set of atomic planes that we can 
imagine in a crystal, provided the wave- 
length, A, and the angle, 0, between the 
incident neutron beam and the planes 
are chosen to satisfy Eq. 3. Bragg scat- 
tering from a particular set of atomic 
planes resembles reflection from a mir- 

relative phase 

The phase angle <f> = k-r (mod 27r) appears in 
the expression ~ e ~ ~ ' ~  describing a plane wave 
of amplitude A. For a plane wave traveling in 
the x direction with wave vector kv = 2m/A, 
we can write the phase as <f> = (mod 2 ~ ) .  
Thus as the wave travels a distance A, its 
phase changes by 27r. When two waves with 
wave vector k and equal amplitude A are in 
phase, their phases at any point in space are 
the same and the waves add constructively to 
yield an intensity of 4 ~ * .  When the relative 
phase (41 - fbi) of two waves is nonzero, the 
waves will interfere with each other so that 
their resulting intensity fluctuates in space and 
is always less than 4 ~ ' .  Incoherent scattering 
produces random changes in the phase of 
the incident wave so that the relative phases 
of the scattered waves are indeterminate, the 
waves do not interfere with each other, and 
the intensity of each wave is added separately 
to yield the total intensity. 
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THE PATH-DIFFERENCE 
APPROACH TO BRAGG'S LAW 

Fig. 7. Constructive interference occurs when 

the waves reflected from adjacent scattering 

planes remain in phase. This happens when 

the difference in distance traveled by waves 

reflected from adjacent planes is an integral 

multiple of the wavelength. The figure shows 

that the extra distance (shown in red) traveled 

by the wave reflected from Scattering Plane 

2 is 2d sin 0. When that distance is set equal 

to n\, the result is, once again, Bragg's law: 
n\ = 2dsin 9. Primary scattering occurs 

when n = 1, but higher-order Bragg peaks are 

also observed for other values of n. 

Scattering Plane 1 

Scattering Plane 2 

Reflected Beam 

ror p arallel to those plan ~es: the angle 
between the incident beam and the plane 
of atoms equals the angle between the 
scattered beam and the plane (Fig. 7). If 
a beam of neutrons of a particular wave- 
length is incident on a single crystal, 
there will, in general, be no diffraction. 
To obtain diffraction for a set of planes, 
the crystal must be rotated to the cor- 
rect orientation so that Bragg's law is 
satisfied-much as a mirror is adjusted 

to reflect the sun at someone's face. 
The signal thus observed by a neutron 
detector at a particular scattering angle 
is called a Bragg peak because as we 
rotate the crystal to obtain diffraction 
we observe a peak in the signal being 
recorded. 

According to Eq. 2, the intensity of 
the scattered neutrons is proportional 
to the square of the density of atoms 
in the atomic planes responsible for the 
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scattering. We can see this by noting 
that as the summation is carried out 
for each atom J in one plane, unit ex- 
ponential factors are added for all the 
atoms k in another plane. And the more 
closely the atoms are spaced within a 
reflecting plane, the more unit factors 
will be summed per unit area. Thus, 
an observation of Bragg peaks allows 
us to deduce both the spacing of planes 
(from Bragg's law) and the density of 
the atoms in the planes. To measure 
Bragg peaks corresponding to many dif- 
ferent atomic planes with neutrons of a 
particular wavelength, we have to vary 
both the scattering angle, 20, and the 
crystal orientation. First we choose the 
detector position so that the scattering 
angle satisfies Bragg's law, then we ro- 
tate the crystal until a Bragg diffracted 
beam falls on the detector. 

To this point we have been discussing 
a simple type of crystal that can be built 
from unit cells, or building blocks, that 
each contain only one atom. In this 
case, each of the exponential factors 
that contribute to S(Q) in Eq. 2 is unity, 
and the structure is easily deduced from 
the intensities of the Bragg peaks and 
the scattering angles at which Bragg dif- 
fraction occurs. However, the unit cells 
of materials of interest to chemists or 
biologists almost invariably have more 
complicated shapes and contain many 
different types of atoms distributed 
throughout their volumes. Those atoms, 
of course, are not positioned randomly 
in the unit cell but are arranged in a ge- 
ometric pattern determined by the way 
they bond together. Nevertheless, it may 
not be trivial to deduce the atomic po- 
sitions from an observation of Bragg 
scattering because some of the expo- 
nential factors that contribute to S (Q) 
are now complex and the phases of 
these quantities cannot be obtained di- 
rectly from a measurement of Bragg 
diffraction. Deducing the structure of 
a complex material may take several 
months and a great deal of ingenuity. 

In diffraction experiments with single 
crystals, the sample must be correctly 
oriented with respect to the neutron (( 
beam to obtain Bragg scattering. Fur- 
thermore, if neutrons of a single wave- 
length are used, the detector must also 
be positioned at the appropriate scatter- 
ing angle for the atomic planes causing 
the scattering. On the other hand, poly- 
crystalline powders, which consist of 
many randomly oriented single-crystal 
grains, will diffract neutrons whatever 
the orientation of the sample relative to 
the incident beam of neutrons. There 
will always be grains in the powder 
that are correctly oriented to diffract. 
Thus, whenever the scattering angle, 
20, and the neutron wavelength, A, sat- 
isfy the Bragg equation (Eq. 3) for a 
set of planes, a reflection will be de- 
tected, independent of the sample orien- 
tation. This observation is the basis of 
a widely used technique known as pow- 
der diffraction, which is implemented 
in slightly different ways depending on 
the nature of the neutron source. Before 
describing powder diffraction in greater 
detail, we digress to consider the dif- 
ferent techniques that may be used to 
produce neutrons for scattering experi- 
ments. 

unit cell 

The repeating unit of a crystal. 

Neutron Production 

Neutron-scattering facilities through- 
out the world generate neutrons ei- 
ther with nuclear reactors or with high- 
energy particle accelerators. The neu- 
trons produced have energies up to tens 
or even hundreds of mega-electron volts 
(MeV), and the corresponding neu- 
tron wavelengths are far too short for 
investigating condensed matter. Fur- 
thermore, neutrons whose energies are 
above a few electron volts tend to dam- 
age solids by knocking atoms out of 
their official positions, producing vacan- 
cies and interstitials. For this reason, 
neutrons must be "cooled down" before 
being used for scattering experiments. 
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cold neutrons 

Neutrons whose energies have been reduced 
below about 5 meV by inelastic scattering 
in a cold material such as liquid hydrogen 
or deuterium. Researchers use such longer- 
wavelength neutrons to conduct experiments 
at larger length scales. 

Such cooling is done by bringing the 
neutrons into thermal equilibrium with a 
"moderating" material-a material with 
a large scattering cross section, such 
as water or liquid hydrogen. The mod- 
erator, whose volume may vary from 
a deciliter to several tens of liters, is 
placed close to the neutron source. Neu- 
trons enter the moderator and, in a se- 
ries of collisions in the material, lose 
energy to recoiling moderator atoms. 
After a few tens of collisions, the ener- 
gies of the neutrons are similar to those 
of the atoms of the moderator. Thus, 
thermal neutrons are emitted from the 
moderator surface with a spectrum of 
energies around an average value de- 
termined by the moderator temperature. 
The average energy of neutrons from 
a water moderator at ambient tempera- 
ture is about 25 thousandths of an elec- 
tron volt (25 meV), and the average 
energy from a liquid-hydrogen modera- 
tor at 20 kelvins is around 5 meV. The 
wavelength of a 25-meV neutron is 1.8 
angstroms (1.8 x 101Â meter), which is 
of the same order as typical interatomic 
distances and, therefore, is quite suitable 
for diffraction experiments. 

Reactor Sources. Neutrons are pro- 
duced in a nuclear reactor by the fis- 
sioning of atoms in the reactor fuel, 
which, for research reactors, is invari- 
ably uranium. The neutrons are moder- 
ated in the manner described above and 
allowed to emerge from the reactor in a 
continuous stream with an energy spec- 
trum similar to the curves of Fig. 8a. 

For most scattering experiments at re- 
actors, the neutrons emerging from the 
moderator must be reduced to a mon- 
ochromatic beam; that is, only those 
neutrons in a single, narrow energy band 
are selected from the spectrum. This 
selection is usually accomplished by 
Bragg reflection from a large single 
crystal of a highly reflective material, 
such as pyrolytic graphite, germanium, 
or copper. A crystal monochromator 

(a) Reactor Neutrons 

(b) Spallation Neutrons 

Energy (meV) 

REACTOR AND 
SPALLATION NEUTRONS 

Fig. 8. (a) The relative flux of neutrons as a 
function of energy for the high-flux reactor 
at the Institut Laue-Langevin in Grenoble, 
France. The curves show the distribution 
of neutrons emerging from moderators at 
temperatures of 20, 300, and 2000 kelvins. 
(b) Similar distribution curves for neutrons 
generated at the Manuel Lujan, Jr. Neutron 
Scattering Center at Los Alamos (LANSCE) 
by moderators at temperatures of 20 and 290 
kelvins. 

works because, even though the inci- 
dent beam contains neutrons of many 
wavelengths, the spacing of the reflect- 
ing planes of atoms, d,  and the scatter- 
ing angle, 20, are chosen so that only 
those neutrons with a wavelength' sat- 
isfying the Bragg equation are trans- 
mitted in the direction of the exper- 
iment. The wavelength of the neu- 
trons used for experiments can then 
be controlled by changing the scat- 
tering angle at the monochromator. 
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spallation neutrons 

Neutrons generated at an accelerator by 
driving a highly energetic beam of particles, 
typically protons, Into a target of heavy atoms, 
such as tungsten. The incident protons knock 
neutrons loose from the nuclei of the target, 
creating a pulse of highly energetic spallation 
neutrons. 

Spallation Sources. Other neutron fa- 
cilities, such as the one at the Manuel 
Lujan, Jr. Neutron Scattering Center at 
Los Alamos (LANSCE), use acceler- 
ators to produce spallation neutrons. 
This is done by allowing high-energy 
protons (or, less effectively, electrons) 
to collide with a heavy-metal target, 
such as tungsten or uranium, driving 
neutrons from the nuclei of the tar- 
get. The protons are produced by the 
accelerators-in this case, LAMPF (the 
Los Alamos Meson Physics Facility) 
coupled with a proton storage ring-in 
bursts that last for less than a microsec- 
ond. At LANSCE there are 20 such 
bursts of 800-MeV protons per second. 
Each proton in the burst then generates 
about 20 neutrons. 

One of the advantages of a spallation 
source is that only a small amount of 
energy-about 27 MeV per neutron- 
is deposited in the spallation target by 
the protons. Nuclear fission produces 
about four or five times as much energy 
in generating each of its neutrons. How- 
ever, the cost of producing the high- 
energy protons-the electricity bill of 
the accelerators-is not cheap. 

The moderated neutrons that finally 
emerge into the experimental area from 
a spallation source have a spectrum re- 
sembling the curves of Fig. 8b. Clearly, 
this spectrum is quite different from 

that produced by a reactor (Fig. 8a) be- 
cause there is a greater percentage of 
high-energy neutrons. However, the 
spectrum is not the only difference be- 
tween the two types of neutron sources. 
Neutrons from a spallation source ar- 
rive in pulses rather than continuously 
as they do at a reactor. This fact means 
that the monochromator crystal needed 
at reactors can here be avoided and all 
the neutrons can be used (rather than 
only those in a narrow energy band). 

The trick that allows the use of all 
neutrons from a spallation source relies 
on the measurement of the time it takes 
for each detected neutron to traverse the 
distance between the moderator and the 
detector. From this time of flight, the 
neutron velocity can be determined, and 
Eq. 1 gives its wavelength. Generat- 
ing a monochromatic beam is therefore 
unnecessary. 

A thermal neutron with an energy of 
25 meV travels at a speed of about 2.2 
kilometers per second, or about Mach 7. 
A typical neutron spectrometer is about 
10 meters long, so the neutron travels 
from the moderator to the detector in 
about 5 milliseconds. Because the du- 
ration of the neutron pulse emerging 
from the moderator of a pulsed source 
is typically a few tens of microseconds, 
the time of flight of the neutron can be 
determined with high relative precision. 

time of flight 

The time it takes a neutron to travel from a 
pulsed source to a detector, which is thus a 
measure of the neutron's velocity and kinetic 

energy. 
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Powder Diffraction 

Now let's return to powder diffrac- 
tion. In a powder-diffraction instru- 
ment at a reactor source (Fig. 9), a 
monochromatic beam of neutrons im- 
pinges on a powdered sample, and the 
neutrons scattered from the sample are 
recorded as a function of the angle 20. 
Each Bragg peak in a typical scattering 
pattern (Fig. 10) corresponds to diffrac- 
tion from atomic planes with a differ- 
ent interplanar spacing, or value of d. 
Many peaks can be recorded simultane- 
ously by placing detectors at a variety 
of scattering angles (such as the sixty- 
four helium-3 detectors in Fig. 9). 

In a powder diffraction instrument at 
a spallation source (Fig. 1 l), the sarn- 
pie is irradiated with a pulsed beam of 
neutrons having a wide spectrum of en- 
ergies. Scattered neutrons are recorded 
in banks of detectors located at differ- 
ent scattering angles, and the time at 
which each scattered neutron arrives 
at the detector is also recorded. At a 
particular scattering angle, the result 
is a diffraction pattern very similar to 
that measured at a reactor, but now the 
independent variable is the neutron's 
time of flight rather than the scattering 
angle. Because the neutron's time of 
flight is proportional to its wavelength 
and, for constant scattering angle, wave- 
length is proportional to the spacing 
between atomic planes (Eq. 3), the mea- 
sured neutron scattering can be plotted 
against either time of flight, A, or d- 
spacing (Fig. 12). (The resemblance be- 
tween Figs. 10 and 12 is obvious. The 
patterns are equivalent ways of prob- 
ing Bragg's law, and in fact, diffraction 
data obtained at reactors and spallation 
sources can be plotted on the same scale 
by simply using Q = 47r sin @/A as the 
independent variable.) 

As in the reactor case, detectors at a 
spallation source can be placed at dif- 
ferent scattering angles, allowing many 
patterns to be measured simultaneously. 

Monochromator 

Monochromator 

Monochromatic 

Moderated 
Neutron 
Beam 

Support 
Track 

POWDER DIFFRACTION AT A REACTOR SOURCE 

Fig. 9. An essential component of a powder diffractometer at a high-flux reactor is a very large 

crystal whose reflecting surface may be as large as 200 square centimeters. The crystal acts as 

a monochromator by scattering neutrons of a given energy toward the sample. To help focus 

the beam of neutrons, the crystal may also be curved, effectively acting as a concave mirror. A 

second scattering occurs at the powder sample, which scatters the monoenergetic focused beam 

toward a set of detectors (here, 64 helium-3 neutron detectors). These detectors are here shown 

positioned along an arc on one side of the sample, but the whole array can be moved to other 

positions along the circular support track. The distance between the monochromator and the 
sample is typically about 2 meters. 

130 140 

Scattering Angle, 26 (degrees) 

A POWDER DIFFRACTION PATTERN RECORDED AT A REACTOR 

Fig. 10. A typical powder diffraction pattern obtained at a reactor source gives intensity, or 

numbers of neutrons, as a function of the scattering angle 20. Each peak represents neutrons 

that have been scattered from a particular set of atomic planes in the crystalline lattice. 

Los Alamos Science Summer 1990 



Neutron Scattering-A Primer 
Sample 

Detector 

Argon-filled ~osiiion 
Flight Path 

\ \ 
Borated Wax 

Shielding 

Detectors at small scattering angles pro- 
vide information about widely spaced 
atomic planes, whereas those at larger 
angles record data relevant to small 
spacings. There is usually some overlap 
of information provided by the different 
detectors. 

Using patterns like those of Figs. 10 
and 12, the atomic structure of a poly- 
crystalline sample may be deduced from 
Eq. 2. In practice, however, one guesses 
the atomic positions, evaluates Eq. 2, 
and from a comparison of the calcu- 
lated and measured diffraction patterns, 
refines the atomic coordinates. This 
type of procedure is described in de- 
tail in the article "X-Ray and Neutron 
Crystallography-A Powerful Combina- 
tion" by Robert Von Dreele. 

POWDER DIFFRACTION AT A SPALLATION SOURCE 

Fig. 11. The Neutron Powder Diffractometer (NPD) at LANSCE (see photograph on page 54). The 

incident beam of neutrons, having been moderated with water chilled to IO'C, is directed onto 

the target in a large evacuated chamber. Surrounding this chamber are eight banks of detectors 

positioned at fixed scattering angles. Each bank consists of sixteen helium-3 detectors, and the 

d-spacing that can be measured ranges from about 1.2 to 33.6 angstroms at the 20' detector 

bank to about 0.25 to 5.2 angstroms at the 148' detector bank. The distance between the sample 

and the detectors at the 9 0  scattering angle is about 2 meters, so the whole spectrometer is 
very much larger than the equivalent instrument at a reactor. 

I I I I 

0.5 0.6 0.7 0.8 
d-spacing (A) 

A POWDER DIFFRACTION PATTERN RECORDED AT A SPALLATION SOURCE 

Fig. 12. A typical powder diffraction pattern obtained at a spallation source ("fat garnet" measured 

at one of the 148' bank of detectors in the diffractometer of Fig. 11). As in Fig. 10, the vertical 

coordinate is the intensity, or number of neutrons, but the horizontal coordinate is the d-spacing 

between atomic planes. The horizontal variable could as well be A (via Bragg's law, Eq. 3) or the 

neutron time of flight (via Eqs. 1 and 3). 

Probing Larger Structures 

Another way of thinking about coher- 
ent elastic neutron scattering is shown in 
Fig. 13. One can imagine the incident 
and scattered neutron waves setting up 
a "probe wave" in the sample-much as 
two misaligned picket fences generate a 
set of moire fringes. One can alter the 
wavelength of the probe wave, Aprobe; by 
changing the angle between the ingoing 
and outgoing waves (that is, the scatter- 
ing angle) or by increasing or decreas- 
ing the wavelength of the neutrons used. 
To obtain information about structures 
by coherent elastic scattering, Aprobe 
must be chosen to be approximately the 
same as the size of the structure. For 
crystallography this means that Aprobe 

needs to be of the same order as inter- 
atomic spacings. We already know this 
from Bragg's law. A little trigonom- 
etry applied to Fig. 13 will show that 
Aprobe = Aneutron/2 sin 61, so that when 
Aprobe equals the distance between two 
adjacent scattering planes, Bragg's law 
is satisfied. 

The probe-wave idea shows us how 
we can measure structures that are larger 
than typical interatomic distances. We 
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THE PROBE-WAVE VIEW 
OF NEUTRON SCATTERING 

Fig. 13. Another way to view neutron scat- 

tering is to imagine that the incident neutron 

wave (In) and the scattered neutron wave (Out) 

form a secondary "probe wave" (here seen as 

a moire pattern in both examples) that must 

match the average periodicity of the structure 

in the scattering sample. Because the average 

periodicity of the top sample is larger than 

that of the lower one, the wavelength of the 

probe wave, Aprobe, must also be larger, which 
in turn means that the scattering angle, 20, 

must be smaller (here 3"). Another way to 

vary Aprobe is to change the wavelength of the 

neutron, Aneutron. 

- 29 = 3' ^ "̂'̂  Probe Waves 

Neutron 
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small-angle neutron scattering 

simply arrange for Aprobe to be large, 
either by decreasing the scattering an- 
gle or by increasing the neutron wave- 
length. In practice, to examine some 
of the larger structures displayed in 
Fig. 3-polymers, colloids, or viruses, 
for example-we need to use neutron 
wavelengths greater than 5 angstroms 
and scattering angles less than 1 de- 
gree. Because of the latter constraint, 
this technique is known as small-angle 
neutron scattering, or SANS. 

The Van Hove formulation for neu- 
tron scattering may be manipulated (see 
"The Mathematical Foundations of Neu- 
tron Scattering") to provide the follow- 
ing equation for the intensity of neu- 
trons scattered at small angles (that is, 
for small values of Q): 

where the integral extends over the 
entire scattering sample and b(r), the 
scattering-length density, is calculated 
by summing the coherent scattering 
lengths of all the atoms over a small 
volume and dividing by that volume. 

In many cases, samples measured by 
SANS consist of particles with a uni- 
form scattering-length density bp that 
are dispersed in a uniform matrix with 
a scattering-length density bm. Exam- 
ples include pores in rock, colloidal dis- 
persions, biological macromolecules in 

water, and many more. The integral 
in Eq. 4 can, in this case, be separated 
into a uniform integral over the whole 
sample and a term that depends on the 
difference, bp - bm, between the scat- 
tering length of the particles and that of 
the matrix. This difference is called the 
contrast factor. If all the particles are 
identical and their positions are uncorre- 
lated, Eq. 4 becomes 

A technique for studying structural details wlth 
dimensions between 10 and 1000 angstroms 
by measuring the intensity of neutrons 
scattered through small angles, usually less 
than 1 degree. 

IS- 

where the integral is now over the vol- 
ume Vp of one of the particles and Np 
is the number of such particles in the 
sample. 

The integral above of the phase factor 
eiQ.r over a particle is called the form 

factor for that particle. For many sirn- 
pie particle shapes, the form factor can 
be evaluated without difficulty: the ex- 
pression for spherical objects was first 
derived by Lord Rayleigh in 1 9 1  1 .  

Equation 5 allows us to understand an 
important technique used in small-angle 
scattering known as contrast rnatch- 
ing. The total scattering is proportional 
to the square of the scattering contrast 
between a particle and the matrix in 
which it is embedded. If we embed the 
particle in a medium whose scattering 
length is equal to that of the particle, 

contrast matching 

An isotopic-labeling technique based on the 
dramatic difference between the scattering 
lengths of hydrogen and deuterium, which 
is particularly useful in neutron-scattering 
studies of complex biological molecules In 
aqueous solution. The technique involves 
matching the scattering from the solvent with 
that from one component of the biological 
molecules by replacing the hydrogen atoms 
in the solvent or the component or both wlth 
deuterium. The observed scattering is then 
due to only the unmatched components. 
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A SMALL-ANGLE 
NEUTRON-SCATTERING 
SPECTROMETER 

Fig. 14. (a) The spectrometer illustrated here, 

the Low4  Diffractometer (LQD) at LANSCE, 

measures neutron scattering at small angles. 

The neutrons are first moderated in liquid 

hydrogen to increase the percentage of very 

cool, long-wavelength neutrons in the beam 

that hits the sample. The moderated beam 

then passes through a collimating system that 

is more than 7 meters long before impinging 
on the sample. To increase the accuracy 

with which the small scattering angles can 

be measured, the large position-sensitive 

detector is placed far from the sample (about 
4 meters). (b) Neutrons from a spallation 

source have a range of speeds and are thus 

under the influence of gravity for different 

amounts of time, an effect that smears the 

signal at the detector. However, the beam can 

be "focused" by placing a fixed aperture at the 

beginning of the collimator and a moveable 

aperture at the end of the collimator and 

accelerating the latter aperture upward during 

the pulse of neutrons. Such an arrangement 

selects only those neutrons with parabolic 

trajectories that end at the center, or focus, of 

the detector. Small-angle scattering is suitable 

for studying structures with dimensions in the 

range of 10 to 1000 angstroms. 

20 

the latter will be invisible. (This tech- 
nique is used by the manufacturers of 
gel toothpaste-there really is gritty ma- 
terial in there to clean your teeth, but 
you can't see it because the grit and the 
gel have similar refractive indices!) 

Suppose the particles we are inter- 
ested in are spherical eggs rather than 
uniform spheres: they have a core (the 
yolk) with one scattering length and a 
covering (the white) of a different scat- 
tering length. If such particles are im- 
mersed in a medium whose scattering 
length is equal to that of the egg white, 
then a neutron-scattering experiment 
will only "see" the yolk. The form fac- 
tor will be evaluated by integrating over 
this central region only. On the other 
hand, if our particles are suspended in a 
medium whose scattering length is the 
same as that of the yolk, only the egg 
white will be visible; the form factor 
will correspond to that of a thick, hol- 
low shell. The scattering pattern will be 
different in the two cases, and from two 
experiments, we will discover the struc- 
tures of both the covering and the core 
of the particle. 

Variation of the scattering-length den- 
sity of the matrix is often achieved by 
choosing a matrix that contains hy- 
drogen (such as water). By replac- 

ing different fractions of the hydrogen 
atoms with deuterium atoms, a large 
range of scattering-length densities 
can be achieved for the matrix. This 
contrast-matching technique works, as 
we pointed out earlier, because of the 
significantly different scattering-length 
densities of hydrogen and deuterium, 
and it is one of the main reasons for the 
successful application of neutron scatter- 
ing to problems in biology. Both DNA 
and protein can be contrast matched by 
water containing different fractions of 
deuterium. Several problems in struc- 
tural biology that have been studied by 
contrast matching are described in "Bi- 
ology on the Scale of Neglected Dimen- 
sions" by Jill Trewhella. 

Small-angle scattering is perhaps the 
easiest neutron-scattering technique to 
realize in practice. Like diffraction ex- 
periments, SANS experiments at a re- 
actor source require a monochromator, 
whereas at a spallation source measure- 
ment of times of flight determine the 
wavelengths of the incident and scat- 
tered neutrons. 

The Low-Q Diffractometer at the 
LANSCE facility (Fig. 14a) is an exam- 
ple of a SANS spectrometer at a spal- 
lation source. One essential component 
of the instrument is a large position- 
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sensitive neutron detector located behind 
the sample directly in line with the inci- 
dent beam. Another important compo- 
nent (invented by Phil Seeger at LAN- 
SCE) is the gravity focuser (Fig. 14b), 
which accounts for the fact that neutrons 
fall under the influence of gravity. If 
the aperture at the exit of the collimator 
that defines the trajectory of the incident 
neutron beam was fixed, neutrons of dif- 
ferent velocities could only pass through 
that slit if they were following parabolic 
paths that fell on the detector at differ- 
ent heights, blurring the image produced 
there. To avoid this blurring, the exit 
aperture of the collimator is moved up- 
ward during each neutron pulse. Slower 
neutrons then have to go through an 
opening that is higher relative to the 
center of the detector. The position of 
the aperture at each instant is chosen so 
that all neutrons, independent of their 
speed, arrive at the center of the de- 
tector, if they are not scattered by the 
sample. The whole thing is a little like 
a stone-throwing contest: weak throwers 
have to throw stones on a higher trajec- 
tory to hit the target. 

Inelastic Scattering 

In reality, atoms are not frozen in 
fixed positions in a crystal. Thermal en- 
ergy causes them to oscillate about their 
lattice sites and to move around inside 
a small volume with the lattice site at 
its center. Since an atom can fully con- 
tribute to the constructive interference of 
Bragg scattering only when it is located 
exactly at its official position in the lat- 
tice, this scattering becomes weaker the 
more the atoms vibrate and the less time 
they spend at their official positions. 

When a crystal structure is deter- 
mined from single-crystal or powder dif- 
fraction, the extent of the thermal mo- 
tion of the atoms is found at the same 
time as the atomic positions. Often, the 
thermal motions are anisotropic, indicat- 
ing that it is easier for an atom to move 

in particular directions away from its 
equilibrium position. Sometimes this 
information can be related to other prop- 
erties, such as structural changes that 
occur at a phase transition or elastic 
amsotropy. 

Although such weakening of the 
scattering signal is the only effect of 
the thermal motion of atoms on elas- 
tic Bragg scattering, it is not the only 
way to use neutrons to observe atomic 
motion. In fact, one of the great ad- 
vantages of neutrons as a probe of con- 
densed matter is that they can be used 
to measure the details of atomic and 
molecular motions by measuring inelas- 
tic scattering. In other words, when the 
neutron bounces off a molecular frame- 
work that is not totally rigid, we can 
have an inelastic interaction with an ex- 
change of energy between neutrons and 
the lattice. 

To explain this, we begin with an- 
other simple analogy. If one end of 
a rope is tied to a fixed point and the 
other end is jerked up and down, a 
wave can be observed traveling along 
the rope. A discontinuous version of 
this effect can be obtained with a chorus 
line (for this analogy I am indebted to 
a colleague who once choreographed it 
for a midwestem television station). If 
each member of the line swings a leg 
but starts the swing slightly after his 
or her nearest neighbor to one side, the 
net effect is the appearance of a wave 
traveling along the line. The thermal 
motion of atoms in a crystal can be de- 
scribed in terms of a superposition of 
waves of this sort. One may imagine 
the atoms to be the feet of the members 
of the chorus line. 

The analogy, if not the image, can 
be improved by replacing the swinging 
legs with rigid pendulums with weights 
at their extremities. Rather than watch- 
ing for a neighbor to swing a leg, we 
achieve coupling by attaching identical 
springs between each pendulum and its 
two nearest neighbors. Now, if we dis- 

place one pendulum, the springs tend 
to cause the neighboring pendulums to 
move as well, and a wave starts pass- 
ing up and down the line, just as it did 
for the chorus. The frequency of motion 
depends on the mass of the pendulums 
and the stiffiiess of the springs that con- 
nect them. 

Waves similar to those in the chain 
of pendulums pass through a lattice of 
atoms connected by the binding forces 
that are responsible for the cohesion 
of matter. The whole effect is much 
more difficult to visualize in this case, 
however, because it happens in three di- 
mensions. Nevertheless, it is possible 
to prove that any atomic motion in a 
crystal can be described by a superpo- 
sition of waves of different frequencies 
and wavelengths traveling in different 
directions. In other words, the thermal 
motion of the atoms about their lattice 
sites can be described as a superposition 
of waves moving through the lattice, 
and these waves are known as phonons. 
Their energies are quantized so that 
each phonon has an energy hv, where 
v is the frequency of atomic motion as- 
sociated with that phonon. Just as in the 
pendulum analogy, the frequency of a 
phonon depends on the wavelength of 
the distortion, the masses of the atoms, 
and the stiffness of the "springs," or 
binding forces, that connect them. 

When a neutron is scattered by a 
crystalline solid, it can absorb or emit 
an amount of energy equal to a quantum 
of phonon energy, hv. This gives rise to 
inelastic coherent scattering of neutrons 
in which the neutron energy before and 
after the scattering event differ by an 
amount 6 equal to the phonon energy. 
In most solids u is a few times 1012 
hertz, and the corresponding phonon 
energy is a few meV (1012 hertz cor- 
responds to an energy of 4.18 meV). 
Because the thermal neutrons used for 
scattering experiments also have ener- 
gies in the meV range, scattering by a 
phonon causes an appreciable fractional 
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phonons 

Fundamental vibrational waves in a crystal In 
which nuclei oscillate in a coordinated manner 
about their "official" positions. 

change in the neutron energy. This al- 
lows an accurate measurement of the 
energy change and makes neutrons an 
ideal tool for measuring phonon fre- 
quencies and hence for obtaining infor- 
mation about the forces that hold matter 
together. 

For inelastic scattering-from pho- 
nons, for example-a neutron has differ- 
ent velocities, and thus different wave 
vectors, before and after it interacts 
with the sample; so the corresponding 
sides of the scattering triangle (k and 
k' in Fig. 5b) are of unequal lengths. 
To determine the phonon energy and 
the scattering vector, Q, we need to de- 
termine the neutron wave vector be- 
fore and after the scattering event. At 
a reactor we may resort to the method 
already discussed-Bragg scattering 
from single crystals. A first crystal, the 
monochromator, directs neutrons of a 
given energy at the sample (as was done 
for the powder diffractometer shown 
in Fig. 9). After the sample scatters 
these neutrons in various directions, a 
second crystal-positioned at a well- 
defined scattering angle and called the 
analyzer-Bragg reflects only those 
neutrons that have a particular energy 
into a suitably placed detector. This 
type of instrument is called a three-axis 
spectrometer (Fig. 15) because there are 
three centers (monochromator, sample, 
and analyzer) at which the scattering an- 
gles can be altered. Such instruments 
are the workhorses for the measurement 
of phonons at reactors. 

Three-axis spectrometers have con- 
tributed prolifically to the various sci- 
entific problems studied by neutron 
scattering, probably because they are 
so inefficient. At each setting of the 

- . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

spectrometer-corresponding to partic- 
ular scattering angles at the monochro- 
mator, sample, and analyzer-a mea- 
surement is made for a single scatter- 
ing vector, Q, and energy transfer, e. 
Each measurement usually takes sev- 
eral minutes; a complete scan at a series 
of values of e may take hours or even 
days. This inefficiency has advantages, 
though-it allows the experimenter to 
concentrate on measuring particular ex- 
citations at particular values of Q and 
e, and it gives that person time to plan 
each new measurement in light of the 
data already accumulated. 

The success of three-axis spectrome- 
ters leads to an interesting philosophical 
dilemma. Does materials science by 
its very nature require for its study an 
instrument such as a three-axis spec- 
trometer? That is, is there some reason 
to believe that a majority of interest- 
ing and important effects occur, like 
Bragg scattering, only in a restricted 
range of values of Q and e? Or has our 
understanding of materials actually been 
hampered because three-axis spectrom- 
eters have been so popular and prolific? 
Have we seen only a part of the truth 
because three-axis spectrometers can 
only probe a single scattering vector and 
energy transfer at one time? Would we 
learn more if we could make measure- 
ments for a wide range of values of Q 
and e simultaneously? Of course only 
the extensive use of alternative types of 
spectrometers can answer this question. 
Many of the instruments that are best 
suited to surveys of neutron scattering 
for large ranges of scattering vector and 
energy transfer are located at spallation 
sources such as the one at LANSCE. 

There is no real equivalent of the 
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three-axis spectrometer, that can be built 
at a spallation source. Inelastic scat- 
tering can, however, be measured in a 
variety of ways. Perhaps the simplest 
is to place an analyzing crystal in the 
scattered neutron beam just as one does 
with the three-axis machine. This crys- 
tal determines the final energy of the 
neutrons scattered by the sample. Once 
this energy and the total time of flight 
from the moderator to the detector are 
known, the incident energy can also be 
deduced. 

Another method of measuring in- 
elastic scattering at a pulsed spallation 
source has been used to obtain some 
of the data discussed by Juergen Eck- 
ert and Phil Vergamini (see "Neutrons 
and Catalysis"). This method uses a fil- 
ter rather than an analyzing crystal in 
the scattered neutron beam. The filter 
allows only neutrons whose energy is 
less than a certain cutoff value to pass 
through to a detector behind the filter. 
Filters of this type can be made, for 
example, from a block of cooled poly- 
crystalline beryllium that is several cen- 
timeters thick. When neutrons impinge 
on the block, they are scattered just as 

they would be from any polycrystalline 
material. But there is a maximum value 
of the neutron wavelength beyond which 
Bragg scattering cannot occur because 
there are no atomic planes spaced far 
enough apart to diffract these long- 
wavelength neutrons. Neutrons with 
wavelengths greater than the cut-off 
therefore pass through the filter without 
being scattered out of the beam. In the 
case of beryllium, neutrons with wave- 
lengths greater than about 4 angstroms 
(energies less than about 5 meV) are 
transmitted. In the Filter-Difference 
Spectrometer at LANSCE, two filters 
are used, beryllium and beryllium ox- 
ide. The latter material transmits neu- 
trons with energies below 3.7 meV. By 
subtracting data obtained with the Be0 
filter from that obtained with the Be fil- 
ter, we obtain a result that includes only 
those neutrons with final energies in the 
narrow window between 3.7 meV and 
5 meV, the two filtering energies. This 
technique allows the energy of the scat- 
tered neutrons to be determined accu- 
rately. As usual, the total time of flight 
lets us deduce the incident energy of the 
neutrons. 
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THREE-AXIS 
NEUTRON SPECTROMETER 

Fig. 15. A three-axis spectrometer built by 
the author at the Institut Laue Langevin in 
Grenoble, France. The scattering angles at 
the monochromator, sample, and analyzer 
can be varied by moving these connected 
units on the air pads seen in the photograph. 
This spectrometer is equipped for polarization 
analysis. The hollow box-like object on the 
sample table has current-carrying wires along 
each edge that can produce a field of about 
100 oersteds at any direction on a sample 
placed at the center of the box. Various spin 
flippers, diaphragms, and filters are mounted 
on the optical benches before and after the 
sample position. 

The Filter Difference Spectrometer 
is not well suited for measurements of 
phonons because the geometry of the 
instrument makes it inherently difficult 
to determine the scattering vector, Q, to 
a high degree of accuracy. This is an 
advantage when one is measuring in- 
coherent inelastic scattering, however, 
because the energy transfer e is often 
independent of Q, and one may sum 
scattered intensities for many values of 
Q, thereby increasing the statistical ac- 
curacy of the data obtained. This sum- 
mation is accomplished automatically 
with the Filter Difference Spectrometer 
at LANSCE. 

The final method of measuring inelas- 
tic scattering at a spallation source-a 
method that does determine the scat- 
tering vector accurately-makes use of 
a so-called chopper spectrometer. The 
chopper, which can be thought of as a 
short (20-centimeter) pipe rotating about 
an axis perpendicular to its length, is 
placed in the neutron beam ahead of 
the scattering sample. If the pipe is ro- 
tating at a frequency that is an integral 
multiple of that of the pulsed neutron 
source, it briefly becomes aligned with 
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the neutron beam at the same time dur- 
ing each neutron pulse from the mod- 
erator. Because the chopper is usually 
several meters from the neutron mod- 
erator, the fast neutrons in each pulse 
arrive at the chopper ahead of their 
slower brethren. Only those neutrons 
that arrive at the chopper when it is 
open-that is, aligned with the beam- 
get through. Thus, the chopper selects 
neutrons in a small band of velocities 
and allows them to impinge on the sam- 
ple. Neutrons outside this band will 
arrive either too late or too early at the 
chopper and will be stopped. The chop- 
per thus determines the wave vector of 
the neutrons incident on the sample, 
whereas a measurement of the total time 
of flight allows the wave vector of the 
scattered neutrons to be calculated as 
well. 

A great advantage of chopper spec- 
trometers is that neutron detectors can 
be placed at many different scattering 
angles simultaneously, allowing scatter- 
ing to be recorded at many values of Q 
and e. The disadvantage is that the ex- 
perimenter is inundated with data and 
must rely heavily on computers to re- 
duce the massive array of numbers to 
something comprehensible. 

In fact, massive amounts of data are 
the norm for spectrometers at spallation 
sources. At each detector, a series of Q 
and e values are measured that corre- 
spond to a full range of differing flight 
times of the detected neutrons. One au- 
tomatically obtains these values whether 
one wants the flood of data or not. In 
short, a three-axis spectrometer at a re- 
actor source is a rifle, whereas its equiv- 
alent at a spallation source is a shot- 
gun. Which source is more efficient for 
a given experiment really depends on 
what type of information one wants- 
a single bull's-eye or a barn door full 
of interesting holes! More seriously, 
we can obtain a detailed knowledge of 
the scattering law for a few values of 
Q and e at a reactor source and a more 

extended picture covering a wide range 
of these variables at a spallation source. 

Magnetic Scattering 

So far we have discussed only the 
interaction between neutrons and atomic 
nuclei. But there is another interaction 
between neutrons and matterÃ‘on that 
results from the fact that a neutron has a 
magnetic moment (Fig. 2). Just as two 
bar magnets either attract or repel one 
another, the neutron experiences a force 
of magnetic origin whenever it passes 
close to another magnetic particle, such 
as an electron in matter. 

Most electrons in atoms or in matter 
are paired so that the magnetic moment 
of one electron cancels that of its part- 
ner. Occasionally, however, not all the 
outer, or binding, electrons are paired in 
a particular compound, and neutrons are 
scattered by the resulting magnetic mo- 
ments. Diffraction experiments, similar 
to those described earlier, can be used 
to measure the density of such unpaired 
electrons between the atoms of a solid. 

Ferromagnetic materials, such as iron, 
are magnetic because the moments of 
their unpaired electrons tend to align 
spontaneously. For many purposes, such 
materials behave as if a small magnetic 
moment were located at each atomic 
site with all the moments pointed in the 
same direction. These moments give 
rise to Bragg diffraction of neutrons in 
the same manner as the nuclear inter- 
action. Because nuclear and magnetic 
interactions experienced by the neu- 
tron are of similar magnitude, the cor- 
responding Bragg reflections are also of 
comparable intensity. 

One difference between the two types 
of scattering, however, is that magnetic 
scattering, unlike its nuclear counter- 
part, is not isotropic. The magnetic in- 
teraction has a dipolar nature, which 
can easily be observed by bringing two 
bar magnets close to one another. Sup- 
pose the two magnets are parallel with 

their north poles pointing upward. If 
one magnet is above the other, unlike 
poles will be close, and the magnets 
will attract; if they are side by side, 
like poles will be close, and the mag- 
nets will repel. For neutrons, the dipolar 
nature of magnetic interaction means 
that only the component of the sample's 
magnetization that is perpendicular to 
the scattering vector, Q, is effective in 
scattering neutrons. Neutron scattering 
is therefore sensitive to the direction of 
magnetization in a material as well as to 
its spatial distribution. 

The anisotropic nature of the mag- 
netic interaction can be used to separate 
nuclear and magnetic Bragg peaks in 
ferromagnets, for which both types of 
Bragg peaks occur at the same values 
of Q. If the electronic moments can be 
aligned by an applied magnetic field, 
magnetic Bragg peaks for which Q is 
parallel to the induced magnetization 
vanish, leaving only the nuclear com- 
ponent. On the other hand, an equiva- 
lent Bragg peak for which the scattering 
vector is perpendicular to the field will 
manifest both nuclear and magnetic con- 
tributions. 

In an antiferromagnet (a material with 
unpaired electrons that have an alter- 
noting, or antiparallel, arrangement), 
the repeat distance between planes of 
magnetic moments is twice that of the 
spacing between corresponding planes 
of atoms. As a result, Bragg's law is 
satisfied at scattering angles whose sines 
are half those for normal Bragg scat- 
tering, as well as at the normal angles. 
Half the magnetic Bragg peaks fall be- 
tween their nuclear counterparts, and 
the problem of separating magnetic and 
nuclear contributions does not arise. 
Nevertheless, the dipolar character of 
the magnetic interaction again allows 
the electronic spin directions to be es- 
tablished. A recent example of this 
is to be found in the superconducting 
cuprates-the so-called high-temperature 
superconductors-some of which are an- 
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Neutron 
Flipped Beam 
Neutron 

' a ?  
Direction of Neutron Beam \ 

A FLAT-COIL NEUTRON-SPIN FLIPPER 

Fig. 16. (a) Schematic diagram of one type of neutron flipper. A direct current in the horizontal 
coil of aluminum wires (blue) produces a fleld Hi Inside the device that is equal but opposite 
to the neutron guide field Hguide, effectively canceling that component. The vertical coil (red) 
produces a fleld Hi that is at right angles to the guide fleld and thus to the moment of the 
neutron, causing it to precess. The strength of this field and the thickness d of the flipper are 
chosen so that the neutron precesses exactly 180 degrees during its passage. (b) Photograph 
of disassembled neutron flipper. The penetrating power of neutrons is apparent in the fact that 
there is no "window" in the two coils of wire; the neutrons pass on through the aluminum wire 
unimpeded. The component on the right produces a vertical guide fleld of about 40 oersteds. 

tiferromagnetic when oxygen deficient. 

Polarized Neutrons. Usually, a neu- 
tron beam contains neutrons with mag- 
netic moments pointing in all directions. 
If we could measure the number of neu- 
trons with moments parallel and antipar- 
allel to a particular direction-say an 
applied magnetic field-we would find 
equal populations. However, various 

special techniques can generate a po- 
larized beam, that is, one with a large 
fraction of its neutron moments in the 
same direction. The polarization of such 
a beam can be maintained by applying 
a modest magnetic field (a few tens of 
oersteds) all along the beam. Such a 
field is called the guide field. 

There are several ways to polarize 
neutron beams: Bragg diffraction from 

suitable magnetized crystals, reflec- 
tion from magnetized mirrors made of 
cobalt and iron (CoFe), and transmis- 
sion through polarized helium-3, for ex- 
ample. Each of these methods aligns 
the neutron moments parallel or an- 
tiparallel to an applied magnetic field. 
If the neutron moments are parallel 
to the field, they are said to be'up; if 
the moments are antiparallel, they are 
said to be down. An 'up' polarizer will 
not transmit 'down' neutrons, just as a 
'down' polarizer blocks 'up' neutrons. 
Thus, by placing an 'up' polarizer be- 
fore and after a scattering sample, the 
neutron scattering law can be measured 
for those scattering processes in which 
the direction of the neutron moment 
is not changed. To measure the other 
combinations-such as 'up' neutrons be- 
ing flipped to 'down' neutrons-requires 
either a variety of different 'up' and 
'down' polarizers or a device called 
a flipper. Because polarizers tend to 
be expensive, flippers are the practical 
choice. 

A flipper is a device that can change 
the direction of a neutron moment from 
up to down or vice versa. This can be 
done in one of two ways. Either the 
guide-field direction can be inverted 
without changing the direction of the 
neutron moment in space, or the neutron 
moment can be inverted without alter- 
ing the direction of the guide field. In 
either case, the direction of the neutron 
moment with respect to the field (which 
is all that counts) has been changed. 

An example of the second type of 
flipper is shown in Fig. 16. It consists 
of two flat coils of wire wrapped one on 
top of the other. One of the coils pro- 
duces a field inside the flipper that is 
equal and opposite to the guide field, ef- 
fectively canceling that component, and 
the other coil produces a field perpen- 
dicular to the guide field. Thus, when 
a neutron enters the flipper, it suddenly 
experiences a magnetic field that is at 
right angles to the direction of its mag- 
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ction of electronic moments in matter. 
Incoherent scattering that arises from 
e random distribution of nuclear spin 

states in materials provides another ex- 
ample of the use of polarization anal- 
ysis. Most isotopes have several spin 
states, and the scattering cross section 

netic moment. In this situation the clas- 
sical equations that describe the motion 
of the neutron moment are similar to 
those of a rotating top that has been 
pushed by a force from the side and 
so begins precessing about its original 
axis of rotation. The neutron does the 
same thing-its moment starts to pre- 
cess about the local field direction at a 
rate known as the Larmor frequency, 
which depends on the magnitude of the 
field inside the flipper. By choosing the 
thickness of the flipper and the strength 
of the field in the second coil appropri- 
ately, one can arrange for the neutron 
moment to rotate precisely 180 degrees 
during its passage through the flipper. 
Clearly, if a neutron's moment was up 
before the flipper, it will be down after 
the flipper, and vice versa. 

Now suppose we have a spectrome- 
ter with polarizers before and after the 
scattering sample. If flippers are in- 
serted on either side of the sample, we 
can measure all of the neutron scatter- 
ing laws-up to down, up to up, and 
so forth-simply by turning the appro- 
priate flipper on or off. This technique, 
known as polarization analysis, is useful 
'oecause some sYkttering processes Hip 
the neutron's moment whereas others do 
not. 

Scattering from a sample that is mag- 
netized provides a good example. Mag- 
netic scattering will flip the neutron's 
moment if the magnetization responsi- 
ble for the scattering is perpendicular to 
the guide field used to maintain the neu- 
tron polarization. If the magnetization 
is parallel to the guide field, no flipping 
occurs. Thus, like the dipolar interaction 
described earlier, polarization analysis is 
a techniaue that helps determine the di- 

for a nucleus varies with spin state. The 
random distribution of nuclear spins in 
the sample gives rise to incoherent scat- 
tering of neutrons. It turns out that two- 
thirds of the neutrons scattered by this 
incoherent process have their moments 
flipped, whereas the moments of the re- 
maining third are unaffected. This result 
is independent of the isotope that is re- 
sponsible for the scattering and of the 
direction of the guide field. Although 
incoherent scattering can also arise if a 
sample contains a mixture of isotopes of 
a particular element, neither this second 
type of incoherent scattering nor coher- 
ent nuclear scattering flip the neutron's 
moment. Polarization analysis thus be- 
comes an essential tool for sorting out 
these different types of scattering, al- 
lowing nuclear coherent scattering to be 
distinguished from magnetic scattering 
and spin-incoherent scattering. 

Polarization analysis has been partic- 
ularly useful in the study of magnetic 
phenomena because it has helped to de- 
termine the directions of the magnetic 
fluctuations responsible for scattering. 
Without this technique, many of the el- 
egant experiments that have provided 
corihrmauon tor "ideas goout noriimear 
physics (see "Nonlinear Science-From 
Paradigms to Practicalities" by David K. 
Campbell, Los Alamos Science No. 15, 
1987) could not have been performed. 
The three-axis spectrometer of Fig. 15, 
for example, is equipped for polarization 
analysis. 

Magnons. Another important aspect 
of magnetized materials is the fact that 
the directions of the atomic moments 
in a material such as iron can oscillate 
like the pendulums considered earlier 
for lattice vibrations. Here again, there 
is a coupling between magnetization at 
different atomic sites, and a wave of 
magnetic oscillations can pass through 
the material. These magnetic excita- 
tions, or magnons, are the magnetic 
analogue of the phonon displacement 

waves described earlier. Not surpris- 
ingly, magnon frequencies can be mea- 
sured by inelastic neutron scattering in 
the same way as phonon frequencies. 
Since the magnetic oscillations that 
make up the magnons are perpendicu- 
lar to the equilibrium direction of the 
atomic moments, the scattering causes 
the magnetic moment of the neutrons to 
be flipped, provided the neutron guide 
field is parallel to the equilibrium di- 
rection of the atomic moments. This, 
of course, allows one to distinguish be- 
tween phonons and magnons. 

Surface Structure 

So far we have described only exper- 
iments in which the structure of bulk 
matter is probed. One may ask whether 
neutrons can provide any information 
about the structure of the surfaces of 
materials. At first sight, one might 
expect the answer to be a resounding 
"No!" After all, one of the advantages 
of neutrons is that they can penetrate 
deeply into matter without being af- 
fected by the surface. Furthermore, 
because neutrons interact only weakly 
wifn matier,'iarge samfiies are generaUly 
required. Because there are far fewer 
atoms on the surface of a sample than 
in its interior, it seems unreasonable to 
expect neutron scattering to be sensitive 
to surface structure. 

In spite of these objections, it turns 
out that neutrons are sensitive to sur- 
face structure when they impinge on 
the surface at sufficiently low angles. 
In fact, for smooth surfaces, perfect re- 
flection of neutrons occurs for almost 
all materials at angles of incidence (the 
angle between the incident beam and 
the surface) less than a critical angle, 
denoted 7c. This angle is proportional 
to the coherent scattering-length density 
of the material and the neutron wave- 
length. For a good reflector, such as 
nickel, the critical angle measured in de- 
grees is about one-tenth of the neutron 
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wavelength measured in angstroms- 
it is well under a degree for thermal 
neutrons. As the angle of incidence in- 
creases above the critical angle, less 
and less of the incident neutrons are re- 
flected by the surface. In fact, reflectiv- 
ity, which measures the fraction of neu- 
trons reflected from the surface, obeys 
the same law, discovered by Fresnel, 
that applies to the reflection of light: re- 
flectivity decreases as the fourth power 
of the angle of incidence at sufficiently 
large grazing angles. 

However, Fresnel's law applies to re- 
flection of radiation from the smooth, 
flat surface of a homogeneous material. 
If the material is inhomogeneous and 
there is a variation of the scattering- 
length density perpendicular to the sur- 
face, the neutron reflectivity, measured 
as a function of the angle of incidence, 
shows a more complicated behavior. By 
keeping the reflection angle, 0, small, 
neutron reflectometry can be used to 
probe density variations in the surface 
to depths of a few thousand angstroms 
with a resolution of a few angstroms. 

Most of today's technical gadgets 

are either painted or coated in some 
fashion to prevent corrosion or wear. 
Reflectometry can often provide useful 
information about such protective lay- 
ers. Figure 17, for example, shows the 
reflectivity, measured on the LANSCE 
Surface Profile Analysis Reflectome- 
ter (SPEAR), from a 1500-angstrom 
layer of diblock copolymer (polystyrene- 
polymethylmethacrylate) multilayer 
deposited on a silicon substrate. The 
spacing of the undulations in this result 
provides a direct measure of the aver- 
age thickness of the polymer layers in 
the film. When the detailed shape of 
the reflectivity profile is compared with 
theoretical predictions, the density and 
thickness of the polymer layers, as well 
as the thickness of the interface between 
layers, can be deduced. 

Neutron reflectometry is a relatively 
new technique. It is also one ideally 
suited to spallation sources. In the next 
few years I expect the method to pro- 
vide new information on subjects as di- 
verse as the recycling of polymers, mag- 
netic recording media, and the cleanup 
of oil spills. For someone like me who 

SURFACE REFLECTIVITY 
MEASUREMENTS 

Fig. 17. Neutron reflectivity as a function 

of 0 (= 4~ sin @/A) for a 1500-angstrom 

thick diblock copolymer (polystyrene-poly- 

methylmethacrylate) multilayer deposited on 

a silicon substrate. The solid line represents 

calculated reflectivity for the data shown. The 

calculation was performed by Tom Russell, 

IBM Almaden Research Labs. 

has been associated with neutron scat- 
tering for more than twenty years, the 
birth of this new technique is a happy 
event. It means that there are still qual- 
itatively new ways in which neutrons 
can help unravel the complex struc- 
tures of the materials on which we de- 
pend. 
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The Mathematical Foundations 
of Neutron Scattering 

I n 1954 Van Hove derived a general expression for the intensity, I (Q, e), of neu- 
trons scattered by any assembly of nuclei. His result makes use of Fermi's ob- 
servation that the actual interaction between a neutron and a nucleus may be 

replaced by an effective potential that is much weaker than the actual interaction. 
This pseudo-potential causes the same scattering as the actual interaction but is weak 
enough to be used in the perturbation expansion derived by Max Born. The Born ap- 
proximation says that the probability of an incident plane wave of wave vector k be- 
ing scattered by a weak potential V(r) to become an outgoing plane wave with wave 
vector k' is proportional to 

where the integration is over the volume of the scattering sample. (We should note 
that even though individual nuclei scatter spherically, V (r) represents the potential 
due to the entire sample, and the resulting disturbance for the assembly of atoms is a 
plane wave.) 

The potential to be used in Eq. 1 is Fermi's pseudo-potential, which, for a single 
nucleus, is given by bj 6(r - rj), where bj is the scattering length of a nucleus labeled 
j located at position rj and 6 is a Dirac delta function that is zero unless the position 
vector r coincides with rj. Thus, for an assembly of nuclei, such as a crystal, the 
potential V (r) is the sum of individual neutron-nuclei interactions: 

where the summation is over all the nuclear sites in the crystal. 
Using Eqs. 1 and 2, Van Hove was able to show that the scattering law-that is, 

the number of neutrons scattered per incident neutron-can be written as 

Note that the sum here is over pairs of nuclei j and k and that the nucleus labeled j 
is at position rj(t) at time t, whereas the nucleus labeled k is at position rk(0) at time 
t = 0. The angular brackets (. . .) denote an average over all possible starting times 
for observations of the system, which is equivalent to an average over all the possible 
thermodynamic states of the sample. 

The position vectors rj in Eq. 3 are quantum-mechanical operators that have 
to be manipulated carefully. Nevertheless, it is instructive to ignore this subtlety 
and treat the equation as if it described a system obeying classical mechanics be- 
cause such an approach clarifies the physical meaning of the equation. The sum over 
atomic sites in Eq. 3 can then be rewritten as 
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and N is the number of atoms in the sample. The delta function in the definition of 
G(r, t) is zero except when the position of an atom k at time zero and the position 
of atom j at time t are separated by the vector r. Because the delta functions are 
summed over all possible pairs of atoms to obtain G(r, t), this function is equal to 
the probability of an atom being at the origin of a coordinate system at time zero 
and an atom being at position r at time t. G(r, t) is generally referred to as the time- 
dependent pair-correlation function because it describes how the correlation between 
two particles evolves with time. 
V a n  Hove's neutron-scattering law (Eq. 3) can now be written as 

(6) 

Fourier trans- 
forms of the time-dependent pair-correlation function. This general result gave a uni- 
fied description for all neutron-scattering experiments and thus provided the frame- 

ork for defining neutron scattering as a field. I As discussed in the text of the main article, this fact-that l(Q1 e) is simply the 
Fourier transform of a function that gives the probability of finding two atoms a cer- 
tain distance apart-is responsible for the power of neutron scattering. By inverting 
Eq. 6, information about both structure and dynamics of condensed matter may be 
obtained from the scattering law. 

Coherent and Incoherent Scattering 

Even for a sample made up of a single isotope, all of the scattering lengths that 
appear in Eq. 3 will not be equal. This is because the scattering length of a nucleus 
depends on its spin state, and most isotopes have several spin states. Generally, how- 
ever, there is no correlation between the spin of a nucleus and its position in a sam- 
ple of matter. For this reason, the scattering lengths that appear in Eq. 3 can be av- 
eraged over the nuclear spin states without affecting the thermodynamic average (de- 
noted by the angular brackets). 

Two spin averages come into play: the average value of b (5) and the average 
value of b2 (b2). In terms of these quantities, the sum in Eq. 3 can be averaged over 

- .  

shorthand for the integral in Eq. 3. The first term on the right side of 
Ea. 7 renresents the so-called coherent scatter in^. whereas the second renresents 
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the incoherent scattering. Thus, we can define the coherent and.incoherent scattering 
lengths as - 

bcoh = b and 

The expression for the coherent scattering law is a sum over both j and k and 
thus involves correlations between the position of an atom j at time zero and the 
position of a second atom k at time t. Although j and k are occasionally the same 
atom, in general they are not the same because the number N of nuclei in the sample 
is large. We can thus say that coherent scattering essentially describes interference 
between waves produced by the scattering of a single neutron from all the nuclei in 
a sample. The intensity for this type of scattering varies strongly with the scattering 
angle. 

Incoherent scattering, on the other hand, involves correlations between the posi- 
tion of an atom j at time zero and the position of the same atom at time t .  Thus, in 
incoherent scattering, the scattered waves from different nuclei do not interfere with 
each other. For this reason, incoherent scattering provides a good method of exam- 
ining processes in which atoms diffuse. In most situations, the incoherent scattering 
intensity is isotropic; that is, it is the same for any scattering angle. This effect of- 
ten allows incoherent scattering to be ignored when observing coherent scattering 
because the incoherent effects just add intensity to a structureless background. 

The values of the coherent and incoherent scattering lengths for different ele- 
ments and isotopes do not vary in any obviously systematic way throughout the peri- 
odic table. For example, hydrogen has a large incoherent scattering length (25.18 fer- 
mis) and a small coherent scattering length (-3.74 fermis). Deuterium, on the other 
hand, has a small incoherent scattering length (3.99 fennis) and a relatively large co- 
herent scattering length (6.67 fennis). As mentioned in the main article, the differ- 
ence between the coherent scattering lengths of hydrogen and deuterium is the basis 
of an isotopic-labeling technique, called contrast matching, that is especially impor- 
tant in applications of neutron scattering to structural biology and polymer science. 

Diffraction 
One of the important applications of Van Hove'sequation (Eq. 3) is the scatter- 

ing law for diffraction, which we develop here for a crystal containing a single iso- 
tope. Even though diffraction is predominantly an elastic scattering process (e = O), 
neutron diffractometers actually integrate over the energies of scattered neutrons. 
Thus, rather than setting e = 0 in Eq. 3 to calculate the diffracted intensity, we inte- 
grate the equation over e. This procedure ensures that the effect of atomic vibrations 
is included in the diffraction cross section. The integral of Eq. 3 over e gives another 
Dirac delta function, 6( t ) ,  that tells us that the pair correlation function, G(r, t), has 
to be evaluated at t = 0 for diffraction. The result, for a crystal containing a single 

where the atomic positions rj and r k  are evaluated at the same instant 
If the atoms in a sample were truly stationary, the thermodynamic averaging 

brackets could be removed from Eq. 9 because rj and r k  would be constant. In re- 
ality the atoms oscillate about their equilibrium positions and only spend a fraction 
of their time at these positions. When this is taken into account, the thermodynamic 
average introduces another factor, called the Debye-Waller factor, and Eq. 9 then be- 
comes 
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s * - - 
where {u2} is the average of (he square of the displacement of an atom from its equi- 
librium position and diffracted intensity is now also called S (Q), the structure factor. 
This equation is the basis of any crystallographic analysis of neutron- 

Small-Angle Scattering. 

I over the atomic sites may be replaced by an integral. As a result, the small-angk ' 
scattering law for coherent, elastic scattering from an assembly of "obiects7' (such as 
those depicted in Pig. 13 in the main text) can be written 

where b(r) is the scattering-length s over the a& 
sample. To calculate b(r) for a large molecule, for example, we simply add u;p the 
coherent scattering lengths of the atoms in the molecule and divide by fhe &gp&ar 
volume. Equation 11 is essentially a coarse-grained version of fhe "trofli" @$&-by , - 
Eq. 3 and is valid only when Q is small. However, it is th& basic analytic &Xiff .,A- 

. Â 
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The Mathematical Foundations
of Neutron Scattering

I trons scattered by any assembly of nuclei. His result makes use of Fermi ob-
servation that the actual interaction between a neutron and a nucleus may be

replaced by an effective potential that is much weaker than the actual interaction.
This pseudo-potential causes the same scattering as the actual interaction but is weak
enough to be used in the perturbation expansion derived by Max Born. The Born ap-
proximation says that the probability of an incident plane wave of wave vector k be-
ing scattered by a weak potential V (r) to become an outgoing plane wave with wave
vector k’ is proportional to

(1)

where the integration is over the volume of the scattering sample. (We should note
that even though individual nuclei scatter spherically, V (r) represents the potential
due to the entire sample, and the resulting disturbance for the assembly of’ atoms is a
plane wave.)

The potential to be used in Eq. 1 is Fermi’s pseudo-potential. which, for a single

vector r coincides with rj. Thus, for an assembly of nuclei, such as a crystal, the
potential V (r) is the sum of individual neutron-nuclei interactions:

(2)

where the summation is over all the nuclear sites in the crystal.
Using Eqs. 1 and 2, Van Hove was able to show that the scattering law—that is,

the number of neutrons scattered per incident neutron-can be written as

(3)

Note that the sum here is over pairs of nuclei j and k and that the nucleus labeled j
is at position r;(f) at time t, whereas the nucleus labeled k is at position rk(0) at time
t = 0. The angular brackets (. .) denote an average over all possible starting times
for observations of the system, which is equivalent to an average over all the possible
thermodynamic states of the sample.

The position vectors rj in Eq. 3 are quantum-mechanical operators that have
to be manipulated carefully. Nevertheless, it is instructive to ignore this subtlety
and treat the equation as if it described a system obeying classical mechanics be-
cause such an approach clarifies the physical meaning of the equation. The sum over
atomic sites in Eq. 3 can then be rewritten as
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in which the Dirac delta function appears again, this time in terms of r and a differ-
ence vector between the position of nucleus j at time t and that of nucleus k at time
zero.

Let us suppose for the moment that the scattering lengths of all the atoms in our
sample are the same (b j = bk = b). In this case, the scattering lengths in Eq. 4 can be
removed from the summation, and the right side becomes

(5a)

and N is the number of atoms in the sample. The delta function in the definition of
G(r, t) is zero except when the position of an atom k at time zero and the position
of atom j at time t are separated by the vector r. Because the delta functions are
summed over all possible pairs of atoms to obtain G (r, t), this function is equal to
the probability of an atom being at the origin of a coordinate system at time zero
and an atom being at position r at time t. G (r, t) is generally referred to as the time-
dependent pair-correlation function because it describes how the correlation between
two particles evolves with time.

Van Hove’s neutron-scattering law (Eq. 3) can now be written as

(6)

forms of the time-dependent pair-correlation function. This general result gave a uni-
fied description for all neutron-scattering experiments and thus provided the frame-
work for defining neutron scattering as a field.

Fourier transform of a function that gives the probability of finding two atoms a cer-
tain distance apart-is responsible for the power of neutron scattering. By inverting
Eq. 6, information about both structure and dynamics of condensed matter may be
obtained from the scattering law.

Coherent and Incoherent Scattering

Even for a sample made up of a single isotope, all of the scattering lengths that
appear in Eq. 3 will not be equal. This is because the scattering length of a nucleus
depends on its spin state, and most isotopes have several spin states. Generally, how-
ever, there is no correlation between the spin of a nucleus and its position in a sam-
ple of matter. For this reason, the scattering lengths that appear in Eq. 3 can be av-
eraged over the nuclear spin states without affecting the thermodynamic average (de-
noted by the angular brackets).

value of b2 (b2). In terms of these quantities, the sum in Eq. 3 can
the nuclear spins to give

and the average
be averaged over

where Ajk is shorthand for the integral in Eq. 3. The first term on the right side of
Eq. 7 represents the so-called coherent scattering, whereas the second represents
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the incoherent scattering. Thus, we can define the coherent and. incoherent scattering
lengths as

(8)

The expression for the coherent scattering law is a sum over both j and k and
thus involves correlations between the position of an atom j at time zero and the
position of a second atom k at time t. Although j and k are occasionally the same
atom, in general they are not the same because the number N of nuclei in the sample
is large. We can thus say that coherent scattering essentially describes interference
between waves produced by the scattering of a single neutron from all the nuclei in
a sample. The intensity for this type of scattering varies strongly with the scattering
angle.

Incoherent scattering, on the other hand, involves correlations between the posi-
tion of an atom j at time zero and the position of the same atom at time t. Thus, in
incoherent scattering, the scattered waves from different nuclei do not interfere with
each other. For this reason, incoherent scattering provides a good method of exam-
ining processes in which atoms diffuse. In most situations, the incoherent scattering
intensity is isotropic; that is, it is the same for any scattering angle. This effect of-
ten allows incoherent scattering to be ignored when observing coherent scattering
because the incoherent effects just add intensity to a structureless background.

The values of the coherent and incoherent scattering lengths for different ele-
ments and isotopes do not vary in any obviously systematic way throughout the peri-
odic table. For example, hydrogen has a large incoherent scattering length (25.18 fer-
mis) and a small coherent scattering length (–3.74 fermis). Deuterium, on the other
hand, has a small incoherent scattering length (3.99 fermis) and a relatively large co-
herent scattering length (6.67 fermis). As mentioned in the main article, the differ-
ence between the coherent scattering lengths of hydrogen and deuterium is the basis
of an isotopic-labeling technique, called contrast matching, that is especially impor-
tant in applications of neutron scattering to structural biology and polymer science.

Diffraction
One of the important applications of Van Hove’s equation (Eq. 3) is the scatter-

ing law for diffraction, which we develop here for a crystal containing a single iso-

neutron diffractometers actually integrate over the energies of scattered neutrons.

to be evaluated at t = O for diffraction. The result, for a crystal containing a single
isotope, is

(9)
j,k

where the atomic positions rj and rk are evaluated at the same instant.
If the atoms in a sample were truly stationary, the thermodynamic averaging

brackets could be removed from Eq. 9 because rj and rk would be constant. In re-
ality the atoms oscillate about their equilibrium positions and only spend a fraction
of their time at these positions, When this is taken into account, the thermodynamic
average introduces another factor, called the Debye-Wailer factor, and Eq. 9 then be-
comes
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librium position and diffracted intensity is now also called S (Q), the structure factor.
This equation is the basis of any crystallographic analysis of neutron-diffraction data.

Small-Angle Scattering.

An important simplification of Eq. 3 occurs when the scattering angle is small.
This approximation leads to the formula for one of the most popular neutron-scatter-
ing techniques—SANS, or small-angle neutron scattering.

Although Eq. 3 correctly describes neutron scattering at any scattering angle,
when the magnitude of Q is very small compared to a typical interatomic distance,
the exponential factors in Eq. 3 do not vary much from atom to atom, and the sum
over the atomic sites may be replaced by an integral. As a result, the small-angle
scattering law for coherent, elastic scattering from an assembly of “objects” (such as
those depicted in Fig. 13 in the main text) can be written

where b (r) is the scattering-length density and the integral extends over the entire
sample. To calculate b (r) for a large molecule, for example, we simply add up the
coherent scattering lengths of the atoms in the molecule and divide by the molecular
volume. Equation 11 is essentially a coarse-grained version of the “truth” given by
Eq. 3 and is valid only when Q is small. However, it is the basic analytic tool of
small-angle scattering. ■
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agine alchemists struggling in the 
dark with materials they do not un- 
derstand; see modern industrialists r trying to control the properties of 

polymers, colloids, and gels; think of a 
theorist grasping for the essentials of 
complicated nonlinear phenomena. Do 
you feel you need some solid ground? 
Neutrons traveling through matter see 
mostly empty space, but their few inter- 
actions with nuclei begin to show us the 
structures of materials~concrete infor- 
mation that can crystallize our questions 
and theories into a framework of future 
discovery. Relating the basic properties 
of materials to their structures trans- 
forms alchemy to technology and binds 
industrial research to basic science. 
This is the world of neutron scattering. 

As director of the Los Alamos Neu- 
tron Scattering Center, Roger Pynn is 
caught up in every aspect of this world. 
When the user rooms at LANSCE are 
jammed with biologists, chemists, physi- 
cists, and industrial researchers, he 
jumps from question to question and 
field to field in only the time it takes him 
to hurry through the halls. (There were 
times when we thought he might write 
all the articles for this issue instead of 
only three.) Even his own ongoing re- 
search projects range from phase transi- 
tions and surface phenomena to instru- 
ment design and data analysis. 

Given the present state of neutron 
scattering in the United States, however, 
Roger's most important work may be 
as LANSCE's ambassador to the larger, 
more political world. In the last weeks 
of 1989, one hundred participants in a 
condensed-matter physics conference 
petitioned Presidential Science Adviser 
Allan Bromley for a new commitment 
to funding for neutron-scattering re- 
search. Citing aging facilities and a 
lack of young scientists entering the 
field, these researchers warned that the 
United States neutron-scattering effort 
may lose irretrievable ground to the 
thriving community in Europe. We inter- 
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viewed Roger to find out where LAN- 
SCE fits in this picture, and he gave us 
a unique perspective on neutron scatter- 
ing's history and on the most pressing 
problems facing the field today. 
Science: Last winter, a petition to se- 
cure funding for neutron scattering's 
future was sent to Presidential Science 
Adviser Allan Bromley. Can you ex- 
plain why? 
Pynn: The petition actually relates to 
the present as much as the future. Right 
now, the two most powerful nuclear re- 
actors used for neutron scattering in this 
country are closed to address safety con- 
cerns. Brookhaven has been closed for 
nearly a year, and Oak Ridge has been 
closed for over three years. In addition, 
the National Institute of Standards and 
Technology reactor was closed during 
1989 while neutron guides were be- 
ing added. It is bad enough that these 
facilities haven't been available for re- 
search, but a larger and larger share of 
the neutron-scattering budget has also 
been spent on their safety studies and 
repairs-and that drains the budgets of 
the remaining facilities. For example, 
this year at LANSCE we'll be able to 
run our beam less than half the year, 
which means we won't accommodate 
nearly as many experiments as we'd 
like. 
Science: Is the situation likely to im- 
prove in the near future? 
Pynn: Well to make matters worse, 
these reactors are all around twenty 
years old, and their neutron-scattering 
instruments are antiquated. If funds 
were available, we could improve ex- 
periments at these facilities by a factor 
of five to ten simply by modernizing 
equipment. For a while, we wouldn't 
even need to worry about getting higher 
beam fluxes. I should say, however, that 
the future of this field depends on build- 
ing facilities with higher beam fluxes. If 
the U.S. wants to keep pace with Eu- 
rope and Japan, it is critical that we 
build a next-generation neutron source. 

Science: Why is it so critical to keep 
pace? The petition to Bromley men- 
tioned economic growth. 
Pynn: As far as that goes, neutron 
scattering has all sorts of technologi- 
cal applications. We can use neutron 
diffraction to do nondestructive testing 
of residual stresses and strains in a wide 
variety of industrial products. Small- 
angle scattering can examine the struc- 
tures of polymers and colloids, which 

The future of this field 
depends on building facili- 
ties with higher beam fluxes. 
If the U.S. wants to keep 
pace with Europe and 
Japan, it is critical that we 
build a next-generation neu- 
tron source. 

are the basic ingredients of many mod- 
em materials. Neutron reflectometry can 
look at the structures of protective coat- 
ings and lubricants. Look what came 
across my desk today: "A Neutron Scat- 
tering Study of Diffusion and Perme- 
ation Processes through Pores in Clay." 
You can imagine applying that to un- 
derground waste disposal or oil mining. 
Really, the industrial uses of neutron 
scattering are endless. 
Science: So you argue that we should 
fund neutron scattering because it is 
crucial to the industrial future of the 
United States? 
Pynn: Partly. I am very interested in 
promoting industrial uses of neutron 
scattering, but that's not the only reason 
to promote the technique. We should 
develop materials-research techniques 
and do science with them whether their 
applications are instantly apparent or 
not. For example, when new materials 
like high-temperature superconductors 

come along, you want to understand 
them and you use every resource you 
have-electron microscopy, nuclear 
magnetic resonance, neutron scatter- 
ing, x rays, or whatever. In the case 
of high-temperature superconductors, 
neutron scattering gives unique infor- 
mation about structure because it can 
locate light elements and also look at 
magnetic properties. Researchers at 
Brookhaven were doing valuable ex- 
periments of this kind when the reactor 
was closed down. For other problems, 
other methods might be more valuable, 
but it is impossible to predict which 
ones. So we should maintain a capabil- 
ity in each technique if we want to have 
an effective materials research program. 
Furthermore, techniques need to be ex- 
plored because they open new areas of 
basic interest. As a matter of fact, the 
development of neutron scattering il- 
lustrates this point quite well. Back in 
the forties, scientists shot neutrons into 
samples because they wanted to find out 
about the fundamental properties of this 
new elementary particle. Today, neutron 
scattering provides useful information 
about the samples themselves to physi- 
cists, chemists, and biologists in addi- 
tion to all the industries I mentioned. 
Science: Go back and tell us a little 
more of the early history. 
Pynn: Soon after Chadwick's discovery 
of neutrons in 1932, researchers began 
trying to understand the properties of 
these particles by sending them through 
various materials. Theorists knew from 
quantum mechanics that neutrons would 
behave like waves, and that low-energy 
neutrons would produce interference or 
diffraction patterns much like x rays. 
But there were many theories and dis- 
agreements about specifics. For exam- 
ple, people wondered what details of 
the interaction between a neutron and 
a nucleus could be determined from a 
scattering experiment, and they won- 
dered whether the neutron's expected 
magnetic field would resemble that of 
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a bar magnet, a current loop, or some- 
thing in between. Fermi resolved the 
first problem in 1936 by proving theo- 
retically that the neutron-nucleus inter- 
action is described by only one mean- 
ingful parameter-what we call today 
the scattering length. The second prob- 
lem grew into a fertile debate between 
Bloch and Schwinger. In 1939, Halpern 
and Johnson suggested experiments to 
settle this argument and to test a number 
of other theories. But of course in the 
early forties, pressure from the Manhat- 
tan Project for critical neutron data was 
dictating most of the neutron research. 
Science: Were these early neutron- 
scattering experiments much the same 
as those done today? 
Pynn: Until the first reactors were 
built, researchers couldn't generate 
enough flux for anything but trans- 
mission experiments, but after the war 
Ferrni and Marshall began experiments 
comparable to ours today. They mea- 
sured neutron diffraction from a crystal 
whose structure was known from x-ray 
experiments-some simple thing like 
rock salt-and then they drew conclu- 
sions about the interaction of neutrons 
with different nuclei by comparing the 
neutron data with the x-ray data. At the 
same time, Wollan and Shull were us- 
ing a similar method to study neutron 
diffraction from crystalline powders and 
getting some very important results. In 
1947 they demonstrated that neutrons 
can see hydrogen atoms in a crystal, 
and that unique ability has become neu- 
tron scattering's great contribution to 
the study of biological systems. An- 
other seminal experiment was Hughes 
and Burg's verification of Schwinger's 
current-loop hypothesis. They pro- 
duced the first fully polarized neutron 
beam by using magnetic mirrors- 
precursors to the reflection technique 
that we use today in neutron guide 
tubes. I should say that in all these ex- 
periments people were still primarily 
interested in understanding the neutron. 

36 

The great breakthrough for 
neutron scattering came 
in 1952 with the first [mea- 
surements of] the internal 
dynamics of condensed- 
matter samples. 

It was the opposite of most research 
today, where we assume we know about 
the neutron and draw conclusions about 
the sample from the scattering. 
Science: Even so, it sounds like the 
early researchers conceived of most of 
the techniques in use today. 
Pynn: To a large extent that is true. 
Most of the gains made in neutron scat- 
tering have been technological. For ex- 
ample, if you want to make guide tubes 
that transport neutrons with minimum 
losses, you have to make glass which 
is optically flat enough and you have 
to learn how to vapor-deposit nickel. 
We have made many improvements like 
that. The neutron spin-echo technique 
that came along in the early seventies 
was a genuinely new method of getting 
high resolution without losing much in- 
tensity, but for the most part the basic 
experimental concepts go way back to 
the beginning. 

Science: When did researchers start 
using neutrons to probe materials? 
Pynn: Once the properties of the neu- 
tron were understood, it was natural to 
turn scattering experiments into a means 
of studying static crystalline structures- 
a change which occurred in the early to 
mid fifties. This wasn't a completely 
new research field, however; essentially 
it extended the x-ray crystallography 
work that had been going on for some 
forty years. The great breakthrough for 
neutron scattering came in 1952 with 
the first inelastic-scattering experiments, 
which investigated the internal dynamics 
of condensed-matter samples. 

In an inelastic-scattering experiment, 
you measure the energy and momen- 
tum a neutron transfers to the atoms of 
a solid-energy which can then vibrate 
throughout the sample as a collective 
excitation called a phonon. Theorists 
had already described phonons as vibra- 
tional waves whose frequencies relate to 
the interatomic forces in solids, but neu- 
tron scattering was the first way to make 
measurements in real samples. Groups 
in France and the U.S. began measuring 
phonons using time-of-flight spectrom- 
eters, and in Canada Brockhouse began 
using what he called a constant-Q scan 
on his triple-axis spectrometer. Such a 
machine measures only at well-defined 
scattering angles and energy transfers, 
which makes for very precise, very fo- 
cussed inelastic-scattering data. Brock- 
house used to say something like you 
never get more data than you need from 
a triple-axis spectrometer, and you al- 
ways get it at a rate that lets you figure 
out exactly what to measure next. As I 
said, many people were working to de- 
velop instruments for measuring inelas- 
tic scattering processes, but the three- 
axis spectrometer became the prevalent 
tool.' For whatever reason, Brockhouse 
was able to apply it to a wider range 
of materials and problems than anyone 
else. Given the technology at the time, 
he made some spectacular measurements 
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of phonons in semiconductors, and met- 
als, and ionic crystals, and everything 
you can think of. He just knocked them 
off one after another. 

The study of phonons in all sorts 
of materials became a major focus of 
neutron-scattering research throughout 
much of the sixties. As the experimen- 
tal part of my doctoral thesis, for exam- 
ple, I studied the phonon spectrum of 
magnesium. I had this huge single crys- 
tal of magnesium-four inches long and 
an inch and a half across-and I mea- 
sured phonons in the damn thing. To- 
day people would say, "So what? Why 
would you bother to measure phonons 
in a single crystal of magnesium?" The 
answer is that we were just beginning to 
learn how to calculate phonon frequen- 
cies in metals from first principles. Peo- 
ple would propose models of the differ- 
ent bonding forces in metals, calculate 
what the phonon frequencies should be, 
and then compare them with neutron- 
scattering measurements. If they didn't 
see agreement, they would go back and 
fool around with their models or come 
up with better ones. Efforts like those 
gave us a much better qualitative and 
quantitative understanding of what holds 
metals together. 
Science: What were some other major 
discoveries from the fifties and sixties? 
Pynn: Perhaps the most striking was 
Van Hove's elegant formulation of the 
neutron-scattering law in 1954. Before 
Van Hove people used neutrons to study 
structure and dynamics in a variety of 
ways, but they didn't understand how 
these different techniques related to each 
other. Van Hove's analysis unified the 
whole field of research. It brought to- 
gether in one simple equation the static 
structure factor, which we measure in 
diffraction experiments, and the collec- 
tive excitations, which we measure in 
inelastic-scattering experiments. Before 
Van Hove no one had really demon- 
strated the simplicity and power of 
neutron scattering as a research tool. 

There were also neutron-scattering re- 
sults which affected materials physics as 
a whole. In 1951 Cliff Shull used neu- 
tron diffraction to verify Neel's theory 
of antiferromagnetic structure, which 
said that in certain materials the mag- 
netic moments of electrons line up in 
alternating sequences. There had been 
no way of proving the existence of such 
antiferromagnets until neutron scatter- 
ing came along. Once this structure had 
been verified, people used inelastic neu- 
tron scattering to discover the collective 
excitations in these antiferromagnets and 
then developed theories to explain them. 
In 1961 neutron scattering was also used 
to observe rotons, a type of collective 
excitation in superfluid helium which 
Landau had predicted on the basis of 
God knows what genius. 
Science: It sounds like neutron scatter- 
ing research was beginning to broaden 
its scope. How did that happen? 
Pynn: After a while it becomes tire- 
some to measure a sample of tedium 
boride for the seventy-fourth time just 
to find out what the interatomic forces 
are at some other temperature. In the 
mid sixties people gradually started to 
do experiments that involved some spe- 
cial physical phenomena; for example, 
if a material went through a ferroelec- 
tric transition, they would use neutron 
scattering to see whether the phonons 
had played a role in this transition. The 
motivation became, "Well, here is this 
phenomenon called a phase transition. 
What can we learn about it with neu- 
trons?" rather than, "Here we have 
this piece of solid garbage on the shelf. 
Let's measure it." 
Science: What is a phase transition? 
Pynn: A phase transition is a disap- 
pearance of order in a sample of matter, 
brought on by a change in some exter- 
nal factor like temperature or pressure. 
Everyone is familiar with ice chang- 
ing to water or water to steam, transi- 
tions in which the structural order as 
well as the bulk properties of the mat- 

[Van Hove] brought together 
in one simple equation the 
static structure factor, which 
we measure in diffraction 
experiments, and the col- 
lective excitations, which 
we measure in inelastic- 
scattering experiments. Be- 
fore [that], no one had really 
demonstrated the simplicity 
and power of neutron scat- 
tering as a research tool. 
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When I look at the theory of 
critical phenomena, it seems 
clear that the universality 
classes could not have been 
identified without the clues 
provided by [neutron scat- 
tering] experiments. 

ter change suddenly; but there are also 
phase transitions in which order changes 
gradually. The order can be structural, 
or magnetic, or ferroelectric, or what- 
ever. Since the early sixties, there has 
been a huge intellectual effort to de- 
scribe the gradual changes in order as 
different systems approach the so-called 
critical point where order disappears al- 
together. By the early seventies, the- 
orists succeeded in organizing these 
continuous phase transitions into uni- 
versality classes defined by the way the 
order changes. They discovered that the 
symmetries of the system, and not the 
particular details of the forces responsi- 
ble for creating the order, determine the 
universality class of the phase transition. 
Some very high-powered people have 
worked on this theory of critical phe- 
nomena, and a Nobel prize was given a 
few years ago for work in this field. 
Science: How did neutron scattering 
contribute to this study? 
Pynn: Let's take the specific exam- 
ple of a magnetic phase transition. As 
you heat a magnetic sample, its spa- 
tially averaged magnetism will decrease 
continuously until you reach the Curie 
temperature [critical point] where the 
magnetism disappears completely. This 
might seem very simple, but it is not. 
Although the average magnetism goes 
through a smooth decrease, the mag- 
netism at any point in the sample fluc- 
tuates more and more about the average 
as the sample nears its critical point 
In addition, the fluctuations in magne- 
tization at one point in the sample are 
correlated with fluctuations at a nearby 
point As the Curie temperature is ap- 
proached, the spatial extent of these 
correlations becomes very large and 
the fluctuations slow down. The way 
in which the correlation length increases 
and the fluctuations slow down-that 
is, the dependence on temperature- 
characterizes the universality class of 
the transition. Neutrons can measure 
both of these quantities, as well as the 

average magnetic order. Without all the 
neutron scattering experiments, I don't 
think theorists would have been able 
to understand these immensely compli- 
cated phenomena. Now when I look 
at the theory of critical phenomena, it 
seems clear that the universality classes 
could not have been identified without 
the clues provided by the experiments. 
So neutron scattering had a large role in 
that development. 
Science: Was neutron scattering a well- 
recognized research field at that time? 
Pynn: It was beginning to become one. 
Until the early seventies, the people 
doing neutron scattering were actu- 
ally condensed-matter physicists who 
had become interested in the technique. 
More important than that, however, was 
the lack of dedicated research facili- 
ties. In the fifties and much of the six- 
ties, neutron scattering was just a para- 
sitic operation at research reactors that 
had been built to study things like iso- 
tope production and radiation damage. 
Those experiments had first priority at 
all the facilities because the people do- 
ing neutron scattering didn't decide the 
politics of reactor use. Instead, they 
hung around the edges, borrowing beam 
lines and setting up spectrometers when 
they could. The first reactor built ex- 
clusively for neutron scattering was the 
Brookhaven High Flux Reactor, which 
came on line in the mid sixties. 
Science: Did the Brookhaven reactor 
begin the field as we know it today? 
Pynn: I'm not sure I can define a be- 
ginning. Certainly the advent of the 
Brookhaven reactor gave neutron scat- 
tering a dedicated tool, but it didn't 
change things that drastically. Even 
though this new reactor was dedicated 
to neutron scattering, it was also ded- 
icated, in a sense, to the few people 
who were employed at Brookhaven. Es- 
sentially, you still had a small neutron- 
scattering group working by themselves. 
The field as we know it today-with 
scientists from all over doing their re- 
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search at large central facilities-started 
during the early seventies in Europe. 
Science: Was there a definable begin- 
ning to this change? 
Pynn: The first real user facility-and 
incidentally still the pre-eminent neutron 
scattering facility in the world today-is 
the Institut Laue-Langevin in Greno- 
ble, France. Sometime after the war, 
a German professor of physics by the 
name of Maier-Leibnitz proposed build- 
ing a large research reactor as part of 
the Franco-German cooperative effort, 
and this reactor became the ILL. It was 
born of politics, not because people 
said, "We have to do neutron scatter- 
ing." It was born because the Germans 
and the French wanted to get together 
for scientific and cultural exchanges. 
As the rumor goes, it was born because 
Maier-Leibnitz had a relative who was 
close to Adenauer, but that may not be 
true. At any rate, Maier-Leibnitz per- 
suaded the politicians that a reactor ded- 
icated to neutron scattering was some- 
thing they needed as well as a scientific 
need. Next, he toured the United States 
and Canada, which were strong in neu- 
tron scattering at that time, asking for 
advice about designing a first-rate re- 
search program. The advice was, "Well, 
first you build your three-axis spectrom- 
eters and get a program established, and 
then you think about doing something 
else." Triple-axis machines were very 
popular at that time, especially in the 
United States, and many of the ques- 
tions asked in inelastic neutron scatter- 
ing were dictated by the machine's char- 
acteristics. Even today that is true to a 
certain extent. Anyway, Maier-Leibnitz 
said, "Thank you very much, but I will 
not build a single three-axis machine 
at my institute." And at first he didn't. 
Instead, he hired a bunch of young peo- 
ple, many of whom knew nothing what- 
soever about neutron scattering, and 
set them working on some of his own 
bright ideas. They were happy to try 
anything because they didn't know what 

was impossible. They invented things 
and incorporated ideas from prototypical 
instruments at smaller reactors in France 
and Germany, and they wound up with 
all sorts of novel instrumentation-and 
only one three-axis machine when the 
institute became operational. 
Science: What were some of Maier- 
Leibnitz's bright ideas? 
Pynn: There were several. One of the 
great successes at the ILL has been the 
use of long-wavelength neutrons-what 
we call cold neutrons. There were other 
cold-neutron sources in operation at the 
time the ILL was built, but they were 
created by putting moderators on ex- 
isting beams. Maier-Leibnitz proposed 
building the moderator in next to the 
reactor core so cold neutrons would be 
generated in copious quantities when- 
ever the reactor was running. At the 
time, many people said the ILL people 
were crazy to tie the operation of the 
reactor and the cold source together in 
this way. Next, Maier-Leibnitz decided 
to use hundreds of meters of optically 
flat, nickel-coated glass tubes to trans- 
port neutrons away from the reactor 
and into a huge new guide hall where 
the background radiation would be low. 

In the fifties and much of the 
sixties, neutron scattering 
was . . . a parasitic opera- 
tion at research reactors.. .. 
The people doing neutron 
scattering.. . hung around 
the edges, borrowing beam 
lines and setting up spec- 
trometers when they could. 

The Brookhaven reactor 
gave neutron scattering a 
dedicated tool, but.. . it was 
also dedicated, in a sense, 
to the few people who were 
employed at Brookhaven. 
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This was an incredibly courageous deci- 
sion given that guide tubes of that type 
had only been benchtop tested and cost 
several thousand dollars a meter. The 
ILL researchers also improved the angu- 
lar resolution of small-angle scattering 
experiments by putting their detector 40 
meters away from the sample-a dis- 
tance that had never been tried before. 
There is still not an instrument in the 
world that comes close to the resolution 
of that machine. 

Maier-Leibnitz also had some wild 
ideas that didn't work. For example, 
he wanted to replace triple-axis spec- 
trometers with three separate remotely 
controlled units that could be moved 
around on air pads. So the ILL people 
laid down enormous, smooth marble 
floors called tanzboden, or dance floors, 
and built these air-levitated units-sort 
of nineteen seventies R2D2 units. Those 
things never worked as planned. In the 
end someone clamped them together 
into a traditional three-axis spectrometer 
that moved on air pads instead of on the 
naval gun mounts used in the sixties. 
That technology has now spread almost 
everywhere. 
Science: Were these developments in 
instrumentation motivated by specific 
scientific questions? 
Pynn: Not really. Maier-Leibnitz had 
specific ideas about improving the mea- 
surement techniques themselves, and he 
knew this would lead to new and excit- 
ing science-an obvious idea that seems 
to have been largely misunderstood in 
the United States. Remember, neutron 
scattering is a signal-limited technique. 
You can't measure a particular effect 
unless enough neutrons reach the detec- 
tor. Let's take a simple example. The 
original triple-axis spectrometers used 
big, flat monochromator and analyzer 
crystals, usually aluminum or copper or 
something else that grew well in single 
crystal form. That is analogous to doing 
optics with rather poor flat mirrors, and 
it is very inefficient. To maximize the 

intensity of a light beam, you usually 
use good-quality reflecting surfaces and 
focus the beam with curved mirrors or 
lenses. People tried all sorts of things 
to make single crystals more efficient 
at transmitting neutrons, for instance 
laying them on a table and beating them 
with a hammer. That helped a little bit 
but it wasn't very controlled. 

Maier-Leibnitz and his co-workers 
thought they knew how to improve the 
flat crystals, and they approached this 
problem in a systematic way-tailoring 
new materials and using multiple crys- 
tals to achieve a focusing effect. Spec- 
trometers today deliver much better in- 
tensity and resolution than the original 
instruments, mostly due to improve- 
ments in individual components rather 
than to increases in neutron fluxes. 
Science: How do you increase the scat- 
tering efficiency of crystals? 
Pynn: It is a very sophisticated tech- 
nique that involves well-defined distor- 
tions of the crystal. You start with a 
crystal that has less than a certain den- 
sity of dislocations, then you cut it to a 
specific shape, then you squeeze it 

Neutron scattering is a 
signal-limited technique. 
You can't measure a par- 
ticular effect unless enough 
neutrons reach the detector. 

along a specific direction usually while 
heating it to a certain temperature. This 
technique has really only been pursued 
at the ILL, which fits with their his- 
tory of developing instrumentation. Let 
me say right now that one-third of the 
initial budget of the ILL was for in- 
strument and spectrometer design and 
construction. By comparison, the plan 
for a next-generation source in the U.S. 
allots only one-fifteenth of the budget to 
instrumentation, and you know exactly 

Maier- Leibnitz had specific 
ideas about improving the 
measurement techniques 
themselves, and he knew 
this would lead to new and 
exciting science-an obvi- 
ous idea that seems to have 
been largely misunderstood 
in the United States. 

what that will produce-nothing new. 
Science: How important has instrument 
development been to the field? 
Pynn: Initially people used diffractome- 
ters and triple-axis machines, which lim- 
ited experiments to a small range of 
phenomena. Now we use small-angle- 
scattering instruments, backscattering in- 
struments, diffuse-scattering instruments, 
time-of-flight instruments, spin-echo in- 
struments, reflectometers, and all sorts 
of other things-and this variety is very 
important. Basically, you can imagine 
that any experiment you want to do ex- 
ists in a space whose dimensions are 
momentum transfer, energy transfer, and 
resolution. Because neutron scattering is 
limited by the flux of neutrons you have 
in your beam, you must develop special 
types of instruments to get you into dif- 
ferent comers of that space. A generic 
instrument simply won't take you ev- 
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erywhere. So people have built special 
new instruments to study phenomena 
involving high momentum transfer, or 
very high resolution, or low energies, 
or whatever specific problem they were 
interested in. The ILL has done a great 
deal to expand the momentum-energy 
space to which we have access, and 
spallation sources like LANSCE also 
expand it. I should point out that fu- 
ture experiments could fall anywhere in 
this space at random; so it is difficult to 
overemphasize instrument development. 
Science: When did the ILL people be- 
gin inviting outside researchers to come 
and do experiments? 
Pynn: I suppose they must have re- 
alized the enormous potential of the 
place once they began building all the 
spectrometers and opening all the beam 
lines. Mossbauer, who succeeded Maier- 
Leibnitz as director of the ILL, really 
initiated the user system by encourag- 
ing proposals from universities and by 
setting up a committee to evaluate these 
proposals and decide who should get 
beam time. By attracting a variety of 
users, this system made a great contri- 
bution to the expansion of the field. The 
ILL uses it today, and we are copying it 
here at LANSCE. 
Science: Say more about how neu- 
tron scattering came to be used for the 
widely varying research we see today. 
Pynn: For the most part, the ideas came 
from outside the field, not from the pro- 
fessional neutron scatterers. I know that 
a very strong group from Oxford drove 
much of the expansion of chemistry re- 
search at ILL, and the push toward uses 
in polymer science and biology also 
came from the outside. 
Science: How did these outsiders find 
out that neutron scattering was such a 
useful tool? 
Pynn: I can at least answer that ques- 
tion for the Oxford chemists. Sometime 
back in the late fifties, Cockcroft, who 
had been the director of the Atomic En- 
ergy Research Establishment at the Har- 

well reactor, was made chairman of a In the United States. small 
committee to get university researchers 
involved in work at government labs. groups working around their 
SO he gave the people at the Harwell own reactors never reallv 
reactor the equivalent of $3 million in 
today's money to develop neutron scat- 
tering, and they drove up the road to 
Oxford and started trying to interest 
people. Among others, they talked to 
a chemist named John White, a real dy- 
namo, apd he started to figure out the 
experiments you could do with neutron 
scattering in chemistry. He later be- 
came one of the directors of the ILL, 
establishing strong connections with the 
chemistry group at Oxford. 

Some physicists who began with neu- 
tron scattering also helped widen the 
field, for example Bernard Jacrot. He 
had been doing scattering experiments 
since the fifties, studying magnetism 
and magnetic properties-he did some 
of the early time-of-flight experiments. 
Anyway, the story goes that sometime 
during his stay at the ILL, Jacrot put a 
dump truck outside his office window, 
threw everything into it, and started do- 
ing biology instead. He was one of the 
people who showed the power of the 
contrast-matching technique, which is 
now almost second nature to biologists. 

All these people came together at the 
ILL. So neutron scattering got a large 
facility where it could grow with influ- 
ences from other fields, and Europe got 
a centralized facility where other fields 
could use neutron scattering. Today, 
for example, the U.K. sees the ILL as 
a training ground for Ph.D.'s in meth- 
ods of research. No such movement 
happened in the United States. In the 
United States, small groups working 
around their own reactors never really 
got together, and that is as true today as 
it was twenty years ago. 
Science: Why did that happen? 
Pynn: Perhaps it has something to do 
with the way things are funded here. 
I'm not a great fan of the peer-review 
system as it works in the U.S. because 

- - -. 

got together, and that is as 
true today as it was twenty 
years ago. 
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it doesn't encourage cooperation or syn- 
thesis of ideas. Anyway, the sociol- 
ogy of neutron scattering in the United 
States has centered the work in small, 
parochial groups that are very defen- 
sive of what they have acquired over 
the years. In contrast, the ILL became 
a user facility-people from universi- 
ties and laboratories came to do science 
there. Until quite recently the idea of a 
facility catering to outside users didn't 
exist in the DOE. Isolated groups of 
professional neutron scatterers ran every 
one of the U.S. facilities. 
Science: Did outside researchers come 
and ask to do experiments? 
Pynn: The doors to the U.S. facilities 
certainly weren't wide open. In the sci- 
entific sense, the neutron professionals 
determined everything that happened in 
neutron scattering. I'm not saying they 
didn't do good science-they did-but 
the field was inbred and cut off from 
new ideas and influences. 

Also, because researchers from differ- 
ent facilities aid not cooperate and be- 
cause there was no user group to ask for 
more facilities, the field got no money 
beyond what was necessary to keep the 
small groups going. In fact, the U.S. 
is missing two generations of scientists 
in neutron scattering. Almost all the 
people who were trained as postdocs at 
Brookhaven or Oak Ridge in the sixties 
and seventies couldn't get a permanent 
job in neutron scattering and went on 
to something else. Despite my air of 
venerability, I'm young in the American 
neutron-scattering scene. The number of 
twenty-five- to thirty-year-olds is essen- 
tially zero. 
Science: Did your coming here coincide 
with the DOE'S idea of encouraging 
user groups? 
Pynn: I think the idea of a designated 
user facility came earlier-near the be- 
ginning of this decade. A number of 
DOE panels have looked into neutron 
scattering. The first one asked what 
would happen to neutron scattering in 
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the United States if its budget remained 
constant. They concluded that neutron 
scattering in the United States was very 
healthy, thank you. It was doing better 
than everybody thought because Amer- 
icans were smarter and didn't need ex- 
pensive, modem facilities. This mistake 
was eventually recognized when suffi- 
cient people managed to get out of the 
United States and see for themselves. 
After that, various committees were set 
up to look into the field, and they said, 
"We have to do better. The Europeans 
are way ahead of us, and the Japanese 
are coming." I remember sitting in front 
of one of these committees during a 
visit to Brookhaven during 1980, when 
I was still at the ILL. Various other labs 
had testified during that hearing, and 
the Oak Ridge people, for example, had 
said, "We had one hundred sixty visitors 
last year." That was a nice introduc- 
tion to my pie chart showing how all 
the ILL users broke out into different 
subjects. There were sixteen hundred 
of them-an order-of-magnitude differ- 
ence! 
Science: Has neutron scattering in the 
United States changed in response to 
these findings? 
Pynn: It is not obvious to me that the 
sociology of the field has changed much 
here. There is just no coordinated lead- 
ership anywhere in this country. As 
a small beginning, LANSCE and the 
pulsed source at Argonne now have 
the same advisory board passing judg- 
ment on experimental proposals, but 
any talk of a national committee seems 
to fall on deaf ears. It is very hard to 
get people from the various facilities to 
work together at this, but we have to try 

and collaborate as we can. I don't think 
the field will move ahead in the United 
States unless we do. 
Science: Is that why you left the ILL 
and came here? 
Pynn: Not really. You have to realize 
that the ILL has set the standard in neu- 
tron scattering for the last decade and 
will probably do so for the next, but I 
had basically done everything I wanted 
to do there. I had built a polarized- 

Until quite recently the idea 
of a facility catering to out- 
side users didn't exist in the 
DOE. Isolated groups of 
professional neutron scat- 
terers ran every one of the 
U. S. facilities. 

neutron spectrometer; I had participated 
in many exciting experiments; and I had 
worked throughout the ILL organiza- 
tion in various capacities. I could have 
stayed and done my own research there, 
but LANSCE was a challenge to me. 
After coming here as a consultant, I be- 
gan to wonder if it could be made better 
than its European competition. I think 
we have succeeded in some ways, but 
we could do a lot better with only 20 
percent more money. 
Science: Is LANSCE now a state-of- 
the-art neutron source? 
Pynn: Before answering that question 
we should ask if LANSCE is a state-of- 
the art spallation source. Most neutron- 
scattering facilities, and most of the 

Los Alarms Science Summer 1990 



An Interview with Roger Pynn 

ones I've mentioned today, use beams 
of neutrons produced by reactors. Spal- 
lation sources, on the other hand, direct 
a beam of accelerated particles onto a 
target, which then emits bursts of high 
energy neutrons. With that said, one 
way to answer my question is in terms 
of the reliability of the beam-delivery 
system. 

In 1988, we had an awful time; on 
average, we had neutrons on the sam- 
ples in our spectrometers during only 
50 percent of the time we scheduled. 
Since we run a user program with peo- 
ple coming in from out of town, that 
is just a complete disaster. It really is. 
Suppose you have some guy come in 
with samples that last a few hours or 
days, and the beam is down. There goes 
$10,000 worth of samples to the waste- 
basket because they couldn't be run on 
the machine. So we made reliability our 
highest priority this year and finished 
with the beam operating 74 percent of 
the time. That is an acceptable level 
for a user program, because a lot of the 
26-percent loss is an hour here and an 
hour there. In fact, that is almost as 
high a reliability as you can expect from 
a state-of-the-art accelerator source be- 
cause they are incredibly complicated 
beasts. The accelerator itself has all 
sorts of power supplies and magnets. 
You need to tune beams to get them into 
closed orbits-all sorts of complicated 
things like that. If an accelerator has 
very high reliability-and some do-its 
design and performance are probably 
not at the forefront of technology. 

Another way to ask if we're state- 
of-the-art involves the intensity of the 
neutron beams on our spectrometers. 
By the end of the 1989 run cycles, we 
had a higher peak neutron flux than any 
other spallation source in the world- 
and when the proton-storage ring is 
operating at full capacity, our neutron 
fluxes will be even higher. 
Science: How does LANSCE compare 
with the best reactor sources? 

Pynn: I like to use our small-angle- 
scattering machine, the Low-Q Diffrac- 

I have always taken the 
tometer, as an example, because many view that reactor and spa/- 
people thought spoliation sources would lation Sources are corn&- 
not be suited to small-angle-scattering 
experiments. AS always, the standard mentafy-that YOU need 
for any comparison in neutron scattering both types if you want a 
is the similar machine at the ILL. We neutron-scattering 
have ontimized the LOD at LANSCE - 
so that our results are as good or better program. 
than the ILL'S when we probe length 
scales up to 500 angstroms or so. At 
larger length scales the ILL instrument 
wins, but most experiments fall in the 
range I just mentioned. In that sense 
we are competitive. However, I have 
always taken the view that reactor and 
spallation sources are complementary- 
that you need both types if you want a 
complete neutron-scattering program. 
You can do a lot of things with each 
one that you can't do with the other. 
For example, spallation sources are bet- 
ter for powder diffraction, but a sim- 
ple three-axis spectrometer at a reactor 
source still produces inelastic-scattering 
data that we cannot duplicate. 
Science: Are you also competitive with 
the ILL in the number of users? 
Pynn: In 1989, one hundred and eighty- 
six scientists were involved in exper- 
iments at LANSCE, and one hundred 
and twenty of them actually came and 
worked. In addition, about three thou- 
sand people are now on our mailing list. 
The IPNS at Argonne, which was the 
first neutron-scattering facility in this 
country to have a user program, has 
done a tremendous job of bringing in 
users and expanding the user commu- 
nity. We are gradually attracting more 
and more people from universities and 
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industry, but it is a long uphill battle. 
Science: In what sense is it uphill? Do 
people have to be very brave to try a 
neutron-scattering experiment? 
Pynn: If you think of going to a facil- 
ity to do something that you have never 
done before, just wanting to get the an- 
swer to your scientific question and not 
knowing exactly what is involved, you 
realize it must be quite daunting. Even 
going to the lab next door and borrow- 
ing a simple piece of equipment can be 
extremely difficult, and might even keep 
you from an important discovery. 
Science: That's human nature isn't it? 
Pynn: I guess, but the adventurous peo- 
ple who overcome these barriers can 
be extremely successful. Lots of peo- 
ple in Europe now use neutron scatter- 
ing and no other technique. They may 
be at a university and have no lab of 
their own, but they can rely on doing 
neutron-scattering experiments at user 
facilities. 
Science: They get hooked on the field? 
Pynn: Perhaps they get hooked on go- 
ing to Grenoble and skiing, either that 
or on French wine and cuisine! But I 
do think it is very important to over- 
come the barriers that prevent scientists 
from coming to user facilities, and we 
work very hard at it. In some sense the 
ILL succeeded because they required 
only a one-page experiment proposal 
and would pay travel fare and living ex- 
penses if they accepted it. So people 
had nothing to lose. The ILL is very 
unusual in paying those expenses; we 
don't have that kind of budget at LAN- 
SCE. Including the proton-storage ring, 
our budget in 1988 was between $14 
million and $15 million dollars per year, 
whereas the ILL'S was over $50 million. 
Science: How do the committees deter- 
mine who gets to do experiments? 
Pynn: My answer to that depends on 
which hat I wear, my user's hat or my 
LANSCE director's hat. Recently I 
got the results from four proposals I 
submitted to the ILL. In that case I'm 

the user, so I sometimes think the ILL 
committees toss a coin and don't con- 
sider scientific merit at all. I had one 
proposal out of four turned down, you 
see, so I argue that the committee just 
didn't understand that proposal. I'm 
sure all users have that attitude, but we 
try, in principle, to get together a group 
of people who can judge. That is ex- 
tremely hard to do. It comes back to 
the question whether theory should lead 
experiment or not. If I propose to you 

Lots of people in Europe 
now use neutron scattering 
and no other technique.. . 
They can rely on doing neu- 
tron-scattering experiments 
at user facilities. 

an experiment to look for Landau's ro- 
ton, you will probably give me beam 
time, provided you understand the the- 
ory of the roton and understand that 
neutrons can find it. It is an essential 
experiment; I could end up verifying 
Landau's theory or demolishing it. But 
suppose I said to you, "There is an ex- 
tremely good theory of magnetic ex- 
citations in a material called TMMC. 
Among other things it predicts four 
modes, and I want to see whether there 
really are four." You would probably 
tell me to do something rude, right? In 
fact, I took part in that experiment, and 
we happened to identify five modes in- 
stead of four. We got beam time only 
because we had proposed something 
else. 
Science: Do you think the committees 
are too conservative? 
Pynn: Quite often, yes. That is one 
of the great disadvantages of the user 
system, and I assume it must be the 
same for a grant system unless you get 
somebody who says, "Let's risk it. This 
looks like wild stuff but it just may pay 

off." Even so, I'm sure an open system 
of proposals and reviews is better than a 
private party where a few people control 
and use the beam time. 
Science: Who at your facility chooses 
the experiments? 
Pynn: I mentioned that we have a joint 
program advisory committee with the 
facility at Argonne National Lab. Peo- 
ple submit proposals to both facili- 
ties, and the committee breaks up into 
three subcommittees: one that looks at 
diffraction, one that looks at small-angle 
scattering and reflectometry, and a third 
that looks at inelastic scattering. Un- 
fortunately, these are technique-oriented 
groups, so there may be only one per- 
son in each group who is an expert on 
a particular type of science. It is hard 
to be sure that you always get the best 
decisions out of a committee like that. 
But to have a wider scientific debate 
in each subcommittee, you need more 
members, and that costs money. The 
way to solve the problem, in my view, 
is to involve other scattering centers in 
the same committee and share the costs. 
Science: Is there a collaborative ar- 
rangement for the people who come 
here to do science? 
Pynn: Users aren't required to have 
any experience with neutron scattering 
to come do an experiment at LANSCE. 
Instead, we generally set it up so each 
user has a local contact, some card- 
carrying member of the neutron Mafia 
who doesn't mind what he shoots his 
neutrons at. 
Science: Let's talk about your connec- 
tion with the rest of the Laboratory. 
Pynn: Well, we have a number of peo- 
ple from different divisions who work 
more or less permanently at LANSCE. 
We have people from the Life Sciences 
Division, someone from Materials Sci- 
ence and Technology, and someone 
from Chemical and Laser Sciences as 
well. That's about the extent of it right 
now. Even here inside the Lab there are 
still a lot of people who don't realize 
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the useful information they can get with 
neutron scattering. I know this because 
I sat on a committee which reviewed 
proposals for internally supported re- 
search [ISRD], and last year a number 
of them could have used neutrons but 
didn't propose to do so. They were not 
intentionally ignoring neutron scattering; 
they just didn't think of it because they 
didn't know it was available or what it 
could do. To a large extent that is our 
fault-we have to get the information 
out there. With that in mind, we have 
been trying to set up a committee with 
representatives from lots of different di- 
visions to try and acquaint people with 
the neutron-scattering facility, and to 
teach them which experiments in their 
work can use neutrons. We hope they 
will eventually become advocates of 
neutron scattering in the Lab. In partic- 
ular, I think we haven't done a good job 
of selling to the weapons community. 
There is a communications problem be- 
cause we are in an open area, and there 
are a number of us, including me, who 
can't hear classified information 
Science: That's right. You're an alien. 
Pynn: I'm an alien and if I'm going to 
discuss weapons-related neutron scatter- 
ing with people, it has to be in a very 
generic sense-but that is often good 
enough. It is only when you are plan- 
ning the details of the experiments that 
you need to know details of materials 
and composition or of shapes and forms 
and sizes. So I can usually tell someone 
whether their experiment makes sense 
without knowing classified details. 

The problems I have as an alien are 
not technical; they're bureaucratic. One 
thing which seems to have changed 
since I came to work in Los Alamos is 
the thicket of rules about foreign nation- 
als at DOE facilities. I can understand 
the need for security and I respect it, 
but some of the new rules aren't well 
considered or in the national interest. 
For example, there was a draft regula- 
tion which would have prevented for- 

eign nationals from using almost any 
computer at a DOE facility-including 
PC-for any kind of work, classified 
or not. That's not very smart. The U.S. 
needs its scientific contacts with the rest 
of the world-perhaps now more than 
in the past. So a sensible compromise 
has to be found which encourages inter- 
national science and preserves national 
security. I have to say, though, I have 
never experienced any discrimination 
towards me here at Los Alamos. The 
people here are always very thoughtful 
and hospitable, even though the bureau- 
cracy can sometimes give real meaning 
to the word "alien9'-a green thing with 
horns that spies or worse. 
Science: What do you see as the future 
of neutron scattering? 
Pynn: I talked before about the need 
for a next-generation source. Ideally, 
we should build both a reactor source 
and a spallation source-and also keep 
the older facilities for more patient de- 
velopment of the field. That way we 
could do the science which needs high- 
intensity sources, and people would 
also have places to think, work, try 
new ideas, and train students without 
too much pressure. I don't think you 
can have a very healthy program with- 
out such places. However, on a more 
realistic level, we need to expand our 
user base in order to generate support 
for at least one new source. If basic re- 
searchers and people from industry com- 
bined their support, their voice would be 
difficult to ignore. So we have to con- 
tribute as we can to technological and 
industrial problems, as well as to ba- 
sic research. Finally, neutron scatterers 
need to speak with a unified voice and 
work together to produce a coherent na- 
tional policy. At the moment, some of 
us are trying to create a national steer- 
ing committee. If we can accomplish 
that and maintain the present fragile 
unity, I think the field will be poised to 
move ahead. 

The U. S. needs its scientific 
contacts with the rest of the 
world-perhaps now more 
than in the past. So a sen- 
sible compromise has to be 
found which encourages in- 
ternational science and pre- 
serves national security. 
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M 
ost facilities for neutron- 
scattering experiments are 
based at nuclear reac- 
tors, but the Manuel Lu- 

jan, Jr. Neutron Scattering Center (or, 
less formally, LANSCE) is one of a 
new generation of neutron sources that 
has become available during the past 
decade-those based at proton accel- 
erators. The new accelerator sources 
have several advantages. First, an accel- 
erator source does not involve nuclear 
fission and therefore poses no threat of 
runaway operation that might lead to 
dispersal of hazardous radiation. Safe 
operation of a reactor requires complex 
control mechanisms, and, as evidenced 
by the Chernobyl disaster, accidents 
involving nuclear reactors can cause 
widespread harm to people and the en- 
vironment. The cost of reducing the 
probability of such accidents to a level 
society finds acceptable is rapidly be- 
coming prohibitive. A second advantage 
of an accelerator source is that it pro- 
duces pulses of neutrons, which can 
be used much more efficiently than the 
continuous flow of neutrons provided 
by a reactor. Thus, although the aver- 
age neutron flux from a pulsed neutron 
source may be 1000 times smaller than 
that from a reactor, the pulsed source is 
capable of producing neutron-scattering 
results of the same caliber as the re- 
actor. A lower neutron flux means a 
lower heat-removal load. For exam- 
ple, only 100 kilowatts of heat have to 
be removed from the LANSCE pulsed 
source, whereas 500 times more heat 
must be removed from a comparable 
reactor source. Finally, with today's 
technology we could build an accelera- 
tor source that provided 100 times more 
neutrons than the best source of this 
type currently operating. In contrast, the 
best reactor we could build would gen- 
erate only five to ten times more neu- 
trons than existing reactors; any further 
improvement would require technol- 
ogy beyond today's dreams. LANSCE 

This aerial view of Technical Area 53 shows the proton linear accelerator of the Los Alamos Meson 
Physics Facility, which produces high-intensity pulses of protons for research in medium-energy 
physics; the Proton Storage Ring, which converts some of the LAMPF pulses into higher-intensity 
proton pulses; and LANSCE, where those proton pulses are used to create high-intensity pulses 
of neutrons for research in materials science. 

is thus of interest not only for the tools 
it currently provides to users but also 
as an inspiration for future directions in 
neutron scattering. 

History 

The origins of the Los Alamos high- 
intensity pulsed neutron source and user 
program go back to the 1960s when 
new accelerator technology culminated 
in the building of the Los Alamos Me- 
son Physics Facility (LAMPF)-a lin- 
ear accelerator providing 1-milliampere 
pulses of 800-MeV protons at a repe- 
tition rate of 120 per second. Then in 
the early 1970s the Weapons Neutron 
Research (WNR) facility was built as an 
adjunct to LAMPF. The WNR facility 

gave the Laboratory an intense neutron 
source that could be used to obtain 
nuclear data needed for weapons design. 

The original plan for the WNR facil- 
ity included a unique feature-a 30- 
meter-diameter ring, called the Pro- 
ton Storage Ring (PSR), into which a 
series of proton pulses from LAMPF 
could be injected. Each injected pulse 
was to occupy about three-quarters 
of the ring's circumference. Several 
thousand proton pulses were to be 
"overlaid" within the ring, ejected as 
one high-intensity pulse several times 
per second, and used to produce neu- 
trons by spallation-a nuclear reac- 
tion in which neutrons are knocked 
out of heavy nuclei by energetic sub- 
atomic particles. The Department of 
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Energy weapons-funding agency ac- I 
cepted a proposal to fund the WNR fa- 
cility in two phases. The first phase in- 
cluded construction of the proton-beam- 
transport system and the spallation- 
target area. The ability of a storage 
ring to produce high-intensity bursts 
of protons-which in turn would pro- 
duce high-intensity bursts of neutrons- 
was recognized, and plans were made to 
build the PSR in the second phase. 

The late Rex Ruharty recognized 
that the WNR facility had great po- 
tential for materials-science research 
in addition to the nuclear-physics re- 
search that had justified the initial fund- 
ing. Consequently, it was designed as 
a multi-user facility to serve both sci- 
entific communities-nuclear physics, 
with neutrons of keV energies, and ma- 
terials science, with neutrons of meV 
energies. The WNR facility produced 
neutrons for the first time in May 1977, 
and routine operation ensued the follow- 
ing year. Shortly thereafter, the Labora- 
tory administration, spurred by George 
A. Keyworth (then leader of the Physics 
Division) sponsored the idea of making 
the WNR facility a national user facility 
for materials-science research. 

In the early 1980s various national 
scientific committees advised expansion 
of the WNR experiment area to facil- 
itate hosting a national user program 
in neutron scattering. The committees 
also urged that the nuclear-physics and 
neutron-scattering programs be provided 
separate neutron-producing targets so 
each might be optimized. Those rec- 
ommendations led, in October 1986, to 
designation of the existing WNR facility 
as a national facility for neutron scat- 
tering. Shortly thereafter funds were 
made available for construction of a 
large addition to the experiment hall, a 
support building containing laboratories 
and office space, and several new neu- 
tron spectrometers. At the same time a 
new facility was constucted for nuclear- 
physics experiments. The expanded 
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A series of bending magnets guides high-intensity proton pulses from the Proton Storage Ring 
to the LANSCE spallation target. 

materials-science facility was called the 
Los Alamos Neutron Scattering Center; 
it was later renamed the Manuel Lujan, 
Jr. Neutron Scattering Center in honor 
of long-term New Mexico Congressman 
Manuel Lujan, Jr. 

The basic experimental methods at 
spallation sources involve the creation 

of discrete but intense pulses of low- 
energy neutrons and subsequent mea- 
surement of neutron times of flight to 
determine neutron energies. To under- 
stand both the principles of those pro- 
cesses and the technology required for 
their implementation, we will track a 
few neutrons from their "birth" in the 
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Fig. 1. This vertical section through the 

LANSCE target assembly and bulk shield 

illustrates the hardware and the processes 

involved in the production of pulsed beams 

of moderated neutrons. A pulse of spallation 

neutrons is created when a pulse of 800-MeV 

protons impinges on the tungsten targets. 

Some of the spallation neutrons collide with 

nuclei in moderators or reflectors; their 

trajectories (arrows) thereby change direction, 

and their energies (represented by various 

colors) decrease. The numbered trajectories 

illustrate points of particular importance. 

50 

1. Very-high-energy spallation neutrons leave 

the target moving roughly in the same di- 
rection as the incident proton beam. Such 

neutrons can generate lower-energy spallation 

neutrons in the reflectors, the beam stop, and 

the surrounding shield. 

2. Neutrons whose initial trajectories miss a 

moderator may be scattered into a moderator 

by a beryllium reflector. 

3. Neutrons that reach low energies by 

wandering around in the reflectors for a long 

time are prevented from entering a beam tube 

by a liner made of cadmium, which absorbs 

low-energy neutrons. 

4. Some thermal neutrons exit the moderator 

along trajectories that pass through a beam 

tube and a collimator. Note that the neutron 

depicted was not absorbed by the cadmium 

decoupler on the back face of the moderator 

because of its high initial energy. 

5. Thermal neutrons that leave the moderator 

traveling at large angles relative to the axis 
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of a beam tube are absorbed by the cadmium 

walls of the tube. 

6. Thermal neutrons that strike a wall of a 

guide tube at sufficiently small angles are re- 

flected by the tube's nickel coating and there- 

fore proceed down the tube being reflected 

from opposite sides of the guide tube walls. 

Such neutrons would have been lost by ab- 

sorption in the walls of a collimator. 

7. The iron walls of the collimator scatter 

epithermal neutrons and thereby define the 

size of the epithermal-neutron beam that exits 

the collimator. 

8. Beam scrapers made of boron carbide ab- 

sorb thermal neutrons that leak into the col- 

limator and thereby help define the thermal- 

neutron beam that exits the collimator. 

9. Most of the spallation neutrons are never 

used in an experiment because they are lost 

in the shielding around the target. 

10. Thermal neutrons whose trajectories 

would allow them to exit the back face of a 

moderator are absorbed by the gadolinium de- 

coupler, thus eliminating crosstalk between 

moderators by ensuring that each moderator 

feeds only one beam tube. 

11. A thin slab of gadolinium poison reduces 

the thickness of the moderator feeding thermal 

neutrons to the beam tube and thereby 

reduces the duration of the thermal-neutron 

pulse. 
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spallation target, through their scattering 
in a sample, to their "death" by absorp- 
tion in a neutron detector. 

The LANSCE Source 

Figure 1 shows a vertical cut through 
the target assembly that generates pulsed 
neutron beams at LANSCE. The neu- 
tron beams emerge into the experiment 
area from beam tubes joined to holes 
drilled horizontally through a radiation 
shield surrounding the crypt-an evac- 
uated steel vessel that holds the target, 
moderators, and reflectors. Pulses of 
high-energy (800-MeV) protons from 
the PSR enter the crypt from above and 
impinge on the spallation target. 

The LANSCE target, a so-called 
split target, is composed of two 10- 
centimeter-diameter cylinders of tung- 
sten. The high-mass-and, therefore, 
neutron-rich-nuclei of tungsten have a 
high cross section for spallation. Each 
of the approximately 1013 protons per 
pulse produces an average of 19 spal- 
lation neutrons, which have energies 
ranging from almost zero to nearly 800 
MeV. Because neutron-scattering ex- 
periments require neutrons with ener- 
gies below about 1 eV, the spallation 
neutrons must be reduced in energy, or 
moderated, before being directed toward 
a sample. The moderation is accom- 
plished by allowing the neutrons to col- 
lide with light nuclei, such as hydrogen, 
to which they can transfer a substantial 
fraction of their kinetic energy. 

The LANSCE crypt contains four 
moderators to reduce the energies of 
the spallation neutrons. One is filled 
with liquid hydrogen and the others with 
room-temperature water. (Only two of 
the LANSCE moderators are shown in 
Fig. 1; the other two would appear in 
cross sections other than the one de- 
picted.) The energy spectrum of the 
neutrons emerging from a moderator de- 
pends on the temperature, composition, 
and thickness of the moderator. For 

example, as shown in Fig. 2a, a water 
moderator yields a spectrum that peaks 
at about 25 meV, whereas the liquid- 
hydrogen moderator yields a spectrum 
that peaks at about 5 meV. The space 
within the crypt not occupied by the 
targets and moderators is largely filled 
with beryllium and nickel reflectors. 
These materials scatter some neutrons 
back into the moderators, giving them 
a second chance to lose energy and to 
emerge along a beam tube. (Only two 
of the current sixteen LANSCE beam 
tubes appear in Fig. 1 .) 

Figure 1 also shows possible events 
in the lives of a few spallation neutrons 
as they are scattered in the moderators 
and reflectors. When a neutron suffers a 
collision, both its trajectory and its en- 
ergy change. Such changes are indicated 
in the figure by changes in the direc- 
tion and color of the arrows representing 
moving neutrons. Most of the neutrons 
born with energies above 20 MeV start 
life moving in directions not much dif- 
ferent from the trajectory of the proton 
beam. Less energetic neutrons emerge 
from the targets more or less isotropi- 
cally. Some neutrons pass directly into 
one of the moderators and, after losing 
energy there, exit from the moderator 
along a beam tube. Other neutrons are 
reflected into the moderators by colli- 
sions with nuclei in the reflectors. The 
highest-energy neutrons can induce spal- 
lation of nuclei in the reflectors, beam 
stop, or shielding; that process is indi- 
cated in Fig. 1 by emergence of two or 
more neutrons from a vertex. Some of 
the secondary spallation neutrons pro- 
duced by the high-energy neutrons find 
their way back to the moderators and 
end up traveling along a beam tube. 

The few neutron histories depicted 
in Fig. 1 clearly show that the mod- 
erated neutrons arising from a proton 
pulse exit a moderator at different times, 
even though the proton pulse is ex- 
tremely brief (270 nanoseconds). Af- 
ter all, the paths along which various 

neutrons travel differ as do their veloci- 
ties. Therefore, the duration of the pulse 
of moderated neutrons is much greater 
than that of the proton pulse (Fig. 2b). 
Furthermore, it increases as the average 
energy of the neutrons decreases. One 
qualitative feature of the neutron pulse 
is independent of energy, however: its 
asymmetry. As Fig. 2b shows, the pulse 
reaches its peak intensity very quickly 
and then decays more slowly. 

The speed, and hence energy, of an 
individual neutron can be determined 
accurately from its time of flight (that 
is, the time taken by the neutron to 
travel from a moderator to a detector) 
only if the time at which the neutron 
left the moderator is known accurately. 
Thus, a short neutron pulse allows time 
of flight to be determined with high rel- 
ative accuracy. Unfortunately, the pulse 
duration can be reduced only at the ex- 
pense of decreased neutron intensity. 
Thus increasingly accurate time-of-flight 
measurements are accompanied by in- 
creasingly greater statistical errors in the 
measured neutron scattering law. 

What is to prevent neutrons that have 
been moderated by wandering around 
for a long time in a reflector from leak- 
ing into a beam tube? Such leakage 
would clearly extend the duration of the 
neutron pulse and degrade the accuracy 
of time-of flight measurements. Closer 
examination of Fig. 1 shows that some 
low-energy neutrons stop at the wall of 
a beam tube, whereas more energetic 
neutrons keep right on going. That is so 
because the beam tubes are lined with 
a material, such as cadmium or boron 
carbide, that captures low-energy neu- 
trons but does little to stop the more 
energetic ones. A similar neutron- 
absorbing material-a "poison"- 
placed inside a moderator reduces the 
effective thickness of the moderator 
for thermal neutrons and thereby re- 
duces the duration of the thermal neu- 
tron pulses. The closer the poison is 
to the exit face of the moderator, the 
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CHARACTERISTICS OF LANSCE NEUTRON PULSES 

Fig. 2. (a) The energy spectrum of the neutron pulses emerging from any of the LANSCE moderators is very broad. Details of the spectrum vary 

with the composition, temperature, and thickness of the moderator. Note the relatively small difference between the energy spectra of neutrons 

from the high-intensity water moderator and from the high-resolution water moderator. (The primary physical difference between those moderators 

is the location of the poison.) (b) The time spectrum of the LANSCE neutron pulses is asymmetric and much broader than the time spectrum of 

the proton pulses, which has a full width at half maximum of 0.27 microseconds. Like the energy spectrum, the time spectrum varies with the 

composition, temperature, and thickness of the moderator. Location of the poison in the high-resolution water moderator closer to the exit face 

decreases the FWHM of the time spectrum and thereby increases the accuracy of the time-of-flight (and thus energy) measurements. However, the 

increased accuracy in energy is bought at the price of lower intensity and hence greater statistical uncertainties in the measured signal. 

shorter is the neutron pulse and the 
lower its intensity. The location of the 
poison is the feature that primarily dis- 
tinguishes the two "high-intensity" water 
moderators at LANSCE from the single 
"high-resolution" water moderator. (The 
liquid-hydrogen moderator contains no 
poison.) 

Figure 1 illustrates another important 
point: Production of moderated neu- 
trons is extremely wasteful. Most of the 
spallation neutrons wander off into the 
reflectors and the shielding without ever 
encountering a moderator or a beam 
tube. By changing the relative arrange- 
ment of the various moderator, reflector, 
and neutron-absorbing materials, it is 
possible to increase somewhat the neu- 
tron flux emerging from the moderators. 
For example, the LANSCE split tar- 
get yields a higher neutron flux than a 
single target because it simultaneously 
feeds neutrons into the moderators from 
above and below. We are fortunate to 

have access at the Laboratory to the best 
computer codes-not to mention a few 
Crays-to optimize the configuration 
of the target assembly. The optimiza- 
tion cannot be performed analytically; 
Monte Carlo computations are the only 
recourse for tracking neutrons and im- 
proving the performance of spallation 
neutron sources. 

The LANSCE split target is unique 
worldwide, thanks to the conceptual de- 
sign of Gary Russell and his colleagues. 
The assembly was installed in August 
1985 and has since operated reliably 
with no target or moderator changes. 
What makes the LANSCE source so 
special is that it is very efficient and 
very "clean": efficient because the mod- 
erators are fed with neutrons by both the 
upper and lower targets, and clean be- 
cause only a small fraction of the spalla- 
tion neutrons escape along a beam tube 
without first being moderated. The lat- 
ter point is important because unmoder- 

ated neutrons, which are not useful for 
neutron scattering, degrade experimental 
results by contributing background 
signals. More important, high-energy 
neutrons can damage living cells and are 
better kept within the crypt. 

The high-energy spallation neutrons 
produced at LANSCE would pass right 
through the biological bulk shield at a 
reactor, which is typically made of con- 
crete containing a neutron-absorbing 
material such as boron. The LANSCE 
crypt is surrounded by a 3.7-meter-thick 
bulk shield containing a core of iron en- 
circled by a layer of concrete. The bulk 
shield, in combination with the nickel 
reflectors within the crypt, reduces the 
radiation exposure of researchers to very 
low levels. 

Neutron Spectrometers 

All neutron-scattering instruments 
have certain common requirements. 
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Each needs a method for piping neu- 
trons from the source to a sample and 
a system for detecting the neutrons that 
are scattered from the sample. The fol- 
lowing sections describe some of the 
hardware used to achieve those ends. 

Collimators. As Fig. 1 shows, neu- 
trons leave the moderator surface in all 
directions. Only those traveling within 
a narrow cone of angles along a beam 
tube can reach a sample outside the bulk 
shield. To further decrease the size and 
angular divergence of the beam of neu- 
trons exiting a beam tube, it can be fed 
through the bulk shield along a colli- 
mator. Jutting out from the walls of 
a typical collimator are boron carbide 
scrapers, which define a thermal neu- 
tron beam by absorbing those thermal 
neutrons that strike them. Boron carbide 
does not absorb neutrons with energies 
above a few keV; those neutrons are 
attenuated by the iron walls of the col- 
limator. The very few neutrons with 
energies greater than 20 keV that es- 
cape the crypt form a beam somewhat 
larger than the thermal neutron beam- 
a halo. Because the halo would create 
undesirable background, it is absorbed 
by heavy shielding material outside the 
bulk shield. It is worth noting that a 
collimator is designed so that a straight 
line drawn between any point along 
its iron walls and the scattering sam- 
ple passes through at least one of the 
boron carbide scrapers. Thus the pulse 
of neutrons incident on the sample is 
not broadened by thermal neutrons that 
leak through the collimator walls. 

The cross-sectional area and shape of 
the neutron beam defined by a collima- 
tor are chosen to match the requirements 
of a neutron spectrometer. For example, 
the samples studied with the Single- 
Crystal Diffractometer are small. Conse- 
quently, the beam-defining apertures in 
its collimator are small. The reflectome- 
ter, on the other hand, uses two narrow 
beams whose shapes are dictated by the 

The Neutron Powder Diffractometer was the first instrument to be installed in the new addition 
to the experiment hall. The &spacing resolution of this diffractometer is better than that of any 
other instrument of its type in the United States. 

need to reflect them at very small angles 
from the flat surface of a sample. 

Many of the collimators within the 
LANSCE bulk shield can be flooded 
with mercury, which acts as a shutter, 
closing off the beam and allowing 
access to the sample. An interlock 

system ensures that no one has access 
to a spectrometer unless its shutter is 
closed. Thwarting of any one interlock 
prevents delivery of protons to the 
spallation target and thus in effect turns 
off all the beams. 

Additional profiling of the neutron 
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beam takes place outside the bulk shield 
in each instrument according to individ- 
ual design. For example, the Neutron 
Powder Diffractometer has five pairs 
of variable apertures in the incident 
beam line that allow the user to tailor 
the beam to the sample size. Neutrons 
that would miss the sample would pro- 
duce unwanted background, so it is best 
to remove them from the beam by plac- 
ing the apertures as far "up beam" of 
the sample and detectors as possible. 
Another instrument, the Low-Q Diffrac- 
tometer, has a beam scraper that offers 
a single aperture or multiple apertures. 
The multiple apertures can be used to 
increase the neutron intensity when a 
weakly scattering sample is being stud- 
ied. The sample must then be suffi- 
ciently large to intercept the multiple 
beams, which converge at the detector 
rather than at the sample. 

Guide Tribes. The astute reader may 
marvel at the inefficiency of the colli- 
mator shown in Fig. 1. Only those neu- 
trons that leave the moderator headed 
almost directly for the spectrometer exit 
the collimator. Coaxing neutrons headed 
in the "wrong" directions into moving 
toward a spectrometer is not generally 
possible, but there is a trick we can 
play-we can install a neutron guide 
tube rather than a collimator. A guide 
tube is usually a rectangular-section tube 
of thick glass. The inner walls of the 
tube are highly polished and coated 
with a thin, smooth layer of nickel or, 
even better, isotopically pure ^ ~ i .  Neu- 
trons that make a sufficiently small an- 
gle with a wall of the guide tube are 
totally reflected from the wall and there- 
fore stay within the guide, headed to- 
ward a neutron spectometer. The "suffi- 
ciently small" angle, in degrees, is about 
one-tenth of the neutron wavelength in 
angstroms. For example, the critical an- 
gle for thermal neutrons with a typical 
wavelength of 2 angstroms is 0.2 de- 
grees. The increased neutron intensity 
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Rodney Hardee, instrument technician at LANSCE, peers along the beam path defined by the set 

of single holes in the top series of beam scrapers for the collimator of the Low-Q Diffractometer. 

(The series of beam scrapers at the 4 o'clock position also have single holes.) The series of 

beam scrapers at the 8 o'clock position illuminates the sample with a set of five beams rather 

than a single beam. 

provided by a guide tube is worth its 
high cost, several thousand dollars per 
meter. The intensity gain is especially 
high for long-wavelength neutrons 
because their critical angles are greater. 

Guide tubes are 10 to 100 meters 
long. They are evacuated to prevent 
neutrons from being scattered out of 
the tube by air. Guides have been 
used at reactors for some time-the 
first were in place at the Institut Laue 

Langevin in France in the early 1970s. 
The National Institute of Standards and 
Technology is currently installing guide 
tubes at its Washington, D.C. reactor, 
and a 25-meter guide will deliver ten 
times more 2-meV neutrons to the new 
LANSCE backscattering spectrometer 
than would a conventional collimator. 

T-zero Choppers. Little can be done 
to change the fact that each pulse of 
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Fig. 3. The neutrons in each moderated pulse begin their flight to a detector at essentially the same time (within a small fraction of a millisecond). 

However, because they all have different energies, as time passes they spread out along the course, reaching the same distance from the moderator 

at different times after departure. That situation is depicted graphically here in plots of distance traveled versus time for neutrons with various 

energies. Each "explosion" on the time axis represents a pulse of neutrons emerging from a moderator. Note that fast neutrons from, say, the 

second pulse can reach a detector 12 meters distant at the same time as slow neutrons from the first pulse. To prevent such "frame overlap," which 

fouls up the time-of-flight measurements, a spectrometer can be equipped with a frame-overlap chopper (See Fig. 4). When the chopper is rotated 

at 10 times per second (half the repetition rate of the proton pulses) and at a certain phase relative to the proton pulses, i t  blocks neutrons with 

energies corresponding to wavelengths less than 16 angstroms. That mode of chopper operation is represented here by a thick horizontal line at a 

distance of 6.25 meters. Changing the phase of the chopper by 90 degrees (moving the thick horizontal line to the left or right a distance equal to 

its length) blocks neutrons with energies corresponding to wavelengths between 16 and 32 angstroms. 

useful thermal neutrons emerging from a 
guide tube or collimator is preceded by 
a bright flash of high-energy neutrons 
and gamma rays generated when the 
proton pulse strikes the spallation target. 
One way of reducing the background 
caused by that radiation is to attenuate 
it with a T-zero chopper, a device so 
named because the zero of time for 
each neutron pulse is defined as the 
moment at which the proton pulse 
strikes the target. The high-energy 
neutrons and gamma rays travel so 
fast that they arrive at a spectrometer 
essentially at the same time as the 
proton pulse hits the target. A T-zero 
chopper, a 30- to 40-centimeter-thick 
slug of nickel alloy, rotates into the 
neutron beam in synchronization with 

the proton pulses and "chops" out both 
gamma rays and high-energy neutrons. 
Because the high-energy neutrons are 
scattered rather than absorbed, the 
chopper is placed inside a heavily 
shielded cave. The pulse of useful 
neutrons arrives at the chopper after the 
nickel slug has moved out of the beam 
path and passes out of the cave through 
a small window. 

Frame-Overlap Choppers. Stripped 
now of background-creating high-energy 
neutrons, each pulse of neutrons flies on 
toward a sample and a detector. Initially 
tightly bunched, the neutrons gradually 
spread apart in space because their 
speeds differ. The spreading is depicted 
graphically in the distance-time diagram 

of Fig. 3. The "explosions" on the time 
axis represent neutron pulses leaving 
the moderator. Examination of Fig. 3 
reveals that fast neutrons in one pulse 
will catch up with slower neutrons in 
the preceding pulse before the latter 
have reached a neutron detector, pro- 
vided the flight distance is sufficiently 
great. This "frame overlap" clearly gets 
worse the longer the flight distance. The 
hare always catches the most motivated 
tortoise if the course they run is long 
enough! Because a neutron detector is 
sensitive only to the arrival of a neu- 
tron and not to its energy, frame overlap 
leads to assignment of erroneous times 
of flight (and hence energies) to neu- 
trons with energies sufficiently different 
from the average. The frame-overlap 
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T-zero Chopper 

problem is reduced significantly if the 
repetition rate of the neutron pulses is 
low, as can be seen by removing every 
other "explosion" on the time axis of 
Fig. 3. LANSCE thus has an advantage 
over other pulsed neutron sources be- 
cause its repetition rate is lower (20 per 
second compared with 30 to 50 per sec- 
ond). However, even at a pulse repeti- 
tion rate of 20 per second, a 12.5-meter 
flight distance leads to frame overlap 
if the bandwidth of the neutron wave- 
lengths is greater than 16 angstroms. 

One way of avoiding frame overlap is 
to install a frame-overlap chopper, a de- 
vice that closes for a prescribed amount 
of time during each pulse to prevent 
neutrons in a particular wavelength band 
from reaching the detector. The frame- 
overlap chopper on the reflectometer 
at LANSCE has a shape resembling 
that of a bow tie and is fabricated of 
a neutron-absorbing material. When the 
chopper is rotated at half the pulse rep- 
etition rate (10 times per second), its 
phase can be adjusted so that neutrons 
with wavelengths less than 16 angstroms 
are transmitted and neutrons with wave- 
lengths between 16 and 32 angstroms 
are absorbed. Changing the phase of 
the chopper appropriately reverses the 
situation: Neutrons with wavelengths 
less than 16 angstroms are blocked, and 
neutrons with wavelengths between 16 
and 32 angstroms are transmitted. Both 
wavelength bands can be used profitably 
on the reflectometer. The observant 
reader may have noticed that the chop- 
per does not prevent frame overlap be- 
tween fast neutrons in the (n +2)th pulse 
and very slow neutrons-those with 
wavelengths beyond 32 angstroms-in 
the nth pulse. Therefore, the very slow 
neutrons are reflected out of the beam 
by silicon wafers coated with nickel. 
Action of a T-zero chopper and a frame- 
overlap chopper is illustrated in Fig. 4. 

Energy Selectors. Although the neu- 
tron pulses transmitted through a frame- 
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T-ZERO AND FRAME-OVERLAP CHOPPERS 

Fig. 4. The LANSCE reflectometer has both a T-zero chopper and a frame-overlap chopper. The 
former scatters the burst of high-energy neutrons and gamma rays (red through yellow) that 
precedes the pulse of moderated neutrons; the latter absorbs lower-energy neutrons that would 
cause frame overlap as they spread out along the flight path because of their different energies 
(see Fig. 3). By t = 10 u s  the T-zero chopper, which rotates 360 every 50 ms, has scattered 
neutrons with energies down to 1 MeV. By t = 15 ms the T-zero chopper has scattered neutrons 
down to 300 meV and rotated out of the beam. Energetic thermal neutrons (green and aqua) 
have reached and are being absorbed by the frame-overlap chopper, which rotates 180" every 
50 ms. The remaining neutrons in the pulse have spread out along the flight path. By t = 40 ms 
the frame-overlap chopper has absorbed neutrons down to 0.3 meV (aqua) and rotated out of the 
beam, allowing very slow neutrons (blue) to proceed on to the sample. By changing the phase of 
the frame-overlap chopper, faster neutrons, rather than slower neutrons, can be allowed to reach 
the sample. Here pale color represents low beam intensity. 
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ENERGY-DEFINING CHOPPER 

Fig. 5. A neutron (red point) traveling in the direction indicated by the red arrow can, if it has the proper speed, pass through the center of a curved 
slit in a rotating disk. Shown here are four snapshots of the neutron making its passage through one of several slits in an energy-defining chopper. 
(To an observer moving with the neutron, the slit appears to open up to allow passage.) Neutrons that do not have the proper speed strike the 
walls of the slit and are absorbed. A chopper of this type can be used to select a narrow band of neutron energies from either the incident or the 
scattered beam. Different neutron energies can be selected by changing the speed of rotation of the chopper. 

overlap chopper have a reduced energy 
bandwidth, that bandwidth is still very 
broad. Such pulses can be used without 
further ado in elastic-scattering exper- 
iments because an elastically scattered 
neutron does not change energy during 
scattering and therefore its measured 
time of flight provides all the energy 
information required. In contrast, in- 
elastic scattering experiments require 
knowledge of the energies of a detected 
neutron both before and after scattering. 
If the initial energy of an inelastically 
scattered neutron is known, say because 
only neutrons whose energies lie within 
a narrow band have been allowed (se- 
lected) to reach the sample, then its final 
energy can be calculated from its mea- 
sured time of flight. Alternatively, if the 
final energy of an inelastically scattered 
neutron is known because only neutrons 
whose energies lie within a narrow band 
have been allowed to reach the detector, 
then its initial energy can be calculated 
from its measured time of flight. 

Several methods are available for 
selecting, from either the incident or 
the scattered beam, neutrons whose 
energies lie within a narrow band. One 
method uses an energy-defining chopper, 
which can be thought of as a window 
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that opens briefly to allow passage of 
neutrons with a particular speed. Such 
a "window" is usually achieved by ro- 
tating an assembly of curved slits in the 
beam line. The curvature of the slits 
and the speed at which the assembly 
rotates determine the energy of the neu- 
trons that pass through the slits. Other 
neutrons strike the walls of the slits and 
are absorbed. The duration of the neu- 
tron pulse transmitted by the chopper 
varies with the width of the slits and 
the speed of rotation. Figure 5 illus- 
trates the operating principle of such 
an energy selector, one of which is in- 
stalled, close to the sample, in the inci- 
dent beam line of Pharos, a new inelas- 
tic scattering instruments at LANSCE. 
(The instrument is named after the an- 
cient lighthouse at Alexandria.) Mag- 
netic bearings allow high-speed rotation 
(1200 times per second) of the chopper, 
and the chopper slit package is made 
from a strong composite material con- 
taining neutron-absorbing boron fibers. 

One of the most common techniques 
for selecting a monochromatic beam 
of neutrons-at both accelerator and 
reactor sources-makes use of Bragg 
diffraction from a single crystal. The 
orientation of the crystal determines the 

energy of the neutrons diffracted toward 
a sample or a detector. When mounted 
in the scattered beam line, an energy 
selector of this type is called an ana- 
lyzer. Each of the analyzers available 
for use with the LANSCE Constant- 
Q Spectrometer consists of an array 
of single crystals rather than one sin- 
gle crystal. All of the crystals have 
the same orientation, and their identi- 
cal orientation is preserved when the 
crystals are rotated to allow diffraction 
from a different set of atomic planes 
(and hence detection of scattered neu- 
trons with a different energy). (Real- 
izing this feat with a single analyzer 
crystal is not possible because it would 
require a crystal of unattainable size.) 
Such an array can "analyze" the neu- 
trons scattered by the sample through 
a wide range of angles. To increase 
the scattered-neutron intensity at the 
detector, dislocations have been intro- 
duced into each crystal by squeezing it 
in a special press. The squeezed crystal 
diffracts as if it were composed of many 
perfect crystal blocks ("mosaic blocks") 
that are slightly misoriented relative 
to one another. That is, it diffracts 
neutrons whose energies lie within a 
finitely (rather than infinitely) narrow 
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band. Thus a greater number of neu- 
Irons are recorded by the detector. The 
increase in measured intensity is accom- 
panied, however, by a decrease in en- 
ergy resolution because the misoriented 
mosaic blocks diffract slightly differ- 
ent energies. Such compromises are not 
uncommon: Neutrons are scattered so 
weakly by matter that obtaining a mea- 
surable signal often requires being satis- 
fied with decreased energy resolution. 

Another method for selecting neutron 
whose energies lie within a narrow 
range makes use of polycrystalline 
"filters" that diffract neutrons with 
certain energies. The most commonly 
used filters are beryllium and beryllium 
oxide, cooled by liquid nitrogen, and 
pyrolytic graphite. The beryllium and 
beryllium oxide filters, used widely in 
connection with cold neutron beams, 
are almost transparent to neutrons with 
energies less than 5.2 meV and 3.7 
meV, respectively, and strongly diffract 
neutrons with higher energies. Alternate 
detector elements of the LANSCE 
Filter-Difference Spectrometer are 
preceded by beryllium and beryllium 
oxide filters. Subtracting the signals 
in the two sets of detector elements 
yields the scattering law of the sample 
for neutrons whose final energies lie 
between 3.7 meV and 5.2 meV. 

Sample-Environment Equipment. 
Most early neutron-scattering experi- 
ments were carried out on samples un- 
der ambient conditions. Because the 
questions being addressed by neutron 
scattering have become increasingly so- 
phisticated, equipment for providing a 
wide range of sample environments has 
become increasingly prevalent. Temper- 
atures down to 1.4 kelvins or up to a 
few hundred degrees Celsius are now 
considered routine and are available 
on almost all neutron spectrometers. 
Also readily available are cells in which 
single crystals or powders can be sub- 
jected to pressures up to a few tens of 
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Each cylinder in this analyzer for the Constant4 Spectrometer is a single crystal of germanium. 
All the crystals have the same orientation, and therefore the analyzer diffracts, toward an array 
of detector elements, neutrons that the sample has scattered through different angles but to the 
same energy. The diameters of the crystals vary because different thicknesses are required for 
optimum diffraction through different angles: Thicker crystals are required for smaller scattering 
angles. Note the mechanism for rotating the crystals in unison to orient other atomic planes 
perpendicularly to the plane of the analyzer. A similar analyzer containing single crystals of 
copper is available. It allows selection of a different set of energies and energy resolutions. 

thousands of atmospheres. The pressure 
cells can often be mounted in cryostats 
and cooled to liquid-helium temperature. 
In addition, at some neutron-scattering 
centers high magnetic fields can be 
applied to samples. 

Extreme sample environments are 
often easier to implement at an accel- 
erator source than at a reactor source. 
Use of a white incident neutron beam 
implies that complete information can 
frequently be obtained by examining 
only those neutrons scattered through a 
narrow range of angles. For example, 
obtaining data that cover lattice spacings 
between 0.3 and 5 angstroms with the 
LANSCE Neutron Powder Diffractome- 
ter requires access to scattering angles 

between 78 and 102 degrees in the 90- 
degree detector bank, whereas obtaining 
data that cover lattice spacings between 
1 and 5 angstroms with a reactor instru- 
ment fed 2-angstrom neutrons requires 
access to scattering angles between 23 
and 160 degrees. Thus the parapher- 
nalia required to subject a sample to 
extreme temperature or pressure need 
not, at a spallation source, be equipped 
with large neutron-transparent windows. 
Such windows are required at a reactor 
source and are not always easy to im- 
plement because few structural materials 
are transparent to neutrons (aluminum is 
one of the best). 

Some types of sample-environment 
equipment are specific to particular 
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types of spectrometers. For example, 
an active vibration-isolation system is 
installed on the LANSCE reflectometer. 
It serves to eliminate ripples on the 
surface of a liquid from which neutrons 
are being reflected. The liquid is usually 
contained in a Langmuir trough, which 
is rather like a Teflon-coated baking 
pan. The pan is equipped with a lid 
to maintain constant vapor pressure 
above the liquid and a boom to allow 
compression of monolayer films on the 
liquid surface. 

A special apparatus that may be 
found on instruments designed to pro- 
vide small-angle-scattering data is a 
Couette, or shear, cell-a device in 
which a fluid can be subjected to shear 
by being confined within the gap be- 
tween two coaxial cylinders rotating 
at different speeds. Analysis of small- 
angle-scattering data for the fluid yields 
information about shear-induced struc- 
tural changes. The shear cell that will 
soon be installed on the LANSCE Low- 
Q Diffractometer is made of fused sil- 
ica, a material that adds little back- 
ground to the small-angle-scattering sig- 
nal. At a maximum torque of 5 newton- 
meters, a shearing rate of 10,000 per 
second will be achieved when the gap 
between the cylinders is 0.3 millimeter. 

Detectors. Almost all neutron detec- 
tors are so-called gas detectors contain- 
ing '^He, one of the few isotopes that 
have a high cross section for absorb- 
ing neutrons. When a '^He nucleus ab- 
sorbs a neutron, a proton and a triton 
are formed. Both have considerable en- 
ergy and are thus capable of knocking 
electrons out of nearby '^He atoms. The 
electrical pulse that occurs as the elec- 
trons migrate to an anode maintained at 
a high voltage is detected by an elec- 
tronic circuit. The neutron is then said 
to have been counted (or recorded or 
detected). The '^He gas is generally con- 
tained within a thin-walled, small-diam- 
eter tube of aluminum or stainless steel. 

A Langmuir trough is used to contain a liquid whose surface is being studied by neutron 

reflectrometry. The vibration-isolation system on which the trough sits eliminates ripples on the 

surface. Laser beams are used to simulate the neutron beams during alignment of the sample. 

A wire strung along the tube axis serves 
as the anode; the tube wall serves as 
the cathode. The efficiency of a neutron 
detector (the fraction of the neutrons 
entering the detector that are counted) 
increases with the number of ' ~ e  atoms 
in the tube, that is, with the product 
of gas pressure and tube volume. In 
addition, because the cross section of 
'^He for absorbing neutrons increases 
with decreasing neutron energy, so also 
does the detector efficiency. Typical 
efficiencies are not far from unity. 

Each time a proton pulse is fired 
at the LANSCE spallation target, an 
electronic clock is started. The clock is 
read when the electrical pulse created 
by absorption of a neutron is detected 
and that time is recorded by the data- 
acquisition system as the measured time 
of flight of the neutron. Because the 
electrical pulse occurs at some time 
after the neutron arrives at the detector, 

the measured time of flight is longer 
than the true time of flight. However, 
the delay between the neutron's arrival 
and detection of the electrical pulse is 
about a microsecond, whereas the true 
time of flight of the neutron is on the 
order of several milliseconds. Therefore. 
the delay introduces a negligible error in 
the measured time of flight. 

The simplest neutron detectors do 
not provide information about where a 
neutron is absorbed. More sophisticated 
detectors, called linear-position-sensitive 
detectors, do provide such information 
in one dimension, namely the axial 
dimension. Therefore a single linear- 
position-sensitive detector can be used 
to count neutrons scattered through 
different angles. Position sensitivity 
can be extended to two dimensions by 
using a hollow disk to contain the 'He 
instead of a tube. A grid of anode wires 
strung across a circular cross section of 
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the disk provides the two-dimensional 
position information. 

Many of the neutron detectors used 
at LANSCE are of the simplest type. 
Their size varies between 5 mm in 
diameter by 150-mm long to 25 mm 
in diameter by 1 meter long. Linear- 
position-sensitive detectors varying in 
length from 200 mm to almost 1 me- 
ter are installed on several LANSCE 
spectrometers. The accuracy with which 
those detectors can determine the posi- 
tion at which the neutron was detected 
varies between 1.8 mm and about 5 
mm. Two LANSCE diffractometers 
are equipped with a two-dimensional 
position-sensitive detector. The one on 
the Single-Crystal Diffractometer covers 
a square area 25 centimeters on a side, 
whereas the one on the Low-Q Diffrac- 
tometer covers a circular area more than 
four times as large-and is considerably 
more expensive! 

Each instrument has a special gas 
detector called a beam monitor, which 
contains a low density of 'OB nuclei (as 
BFs) and detects only about one neutron 
out of every hundred thousand. The 
beam monitor provides the energy spec- 
trum of the neutrons incident on a sam- 
ple. That information is used when the 
neutron scattering law for the sample is 
calculated from the data provided by the 
detectors in the scattered beam. 

Data-Acquisition and -Analysis Sys- 
tems. Electronic signals from the neu- 
tron detectors on each LANSCE spec- 
trometer are fed into a data-acquisition 
system solely dedicated to that spec- 
trometer. Because most of the spec- 
trometers are equipped with a detector 
system containing more than one de- 
tector element, the number of neutrons 
recorded per second can be very large- 
up to 100,000 on the High-Intensity 
Powder Diffractometer, for example. 
The LANSCE data-acquisition systems 
are designed to handle such a barrage 
of information, storing both the time of 

This display of gas detectors used at LANSCE includes, from bottom right, a 6-mm by 100-mm 
detector from the 5-degree bank of the High-Intensity Powder Diffractometer; a 12-mm by 300-mm 

detector from the Neutron Powder Diffractometer; a 25-mm by 300-mm detector; a 25-mm by 
600-mm detector; a 25-mm by 1-meter detector from Pharos; a 12-mm by 600-mm linear-position- 

sensitive detector; a 12-mm by 150-mm detector from the Constant-Q Spectrometer; a beam 
monitor; and the array of 12-mm by 300-mm linear-position-sensitive detectors from the Surface 

Profile Analysis Reflectometer. 

flight and detector element (scattering 
angle) corresponding to each detected 
neutron. Each data-acquisition system is 
based on an electronic transmission line 
called a FASTBUS. Along this computer 
"highway" thirty-two "lanes" of signals 
are directed according to internationally 
standard protocols. A FASTBUS is 
capable of handling 2,000,000 events 

per second. 
Data from each LANSCE instrument 

are delivered to a VAX-station computer 
with 9 megabytes of memory; data files 
are written on a local magnetic 300- 
megabyte disk. Data are then archived 
on a 150-gigabyte optical disk. (Such 
a disk could store the entire contents of 
Encyclopaedia Britannica 600 times). 
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Thirty data-analysis systems are avail- 
able, each based on a VAX 3100 work- 
station and providing color graphics and 
dial-in capabilities. 

The veritable deluge of data that 
pours out of a spectrometer at a spal- 
lation source can be an advantage for 
survey experiments. On the other hand, 
knowing what measurements to make 
next is very difficult when the full im- 
port of data already obtained has not yet 
been comprehended. Therefore, high- 
speed computers are needed to convert 
raw data into neutron scattering laws, 
as are advanced computer graphics and 
image-processing software to provide 
insightful views of data and results of 
calculations. 

The LANSCE User Program 

Because neutrons are much in de- 
mand and available only at a few spe- 
cialized facilities, the experimenter who 
needs neutrons is forever chasing af- 
ter them. He or she often applies well 
in advance to more than one facility 
to ensure getting some precious beam 
time on an instrument. Beam time is 
of course available at LANSCE only 
when LAMPF is up and running, and 
its running period is limited by funding 
constraints to about five or six months 
a year. LANSCE issues a call for pro- 
posals before each scheduled running 
period. In response, scientists from uni- 
versities, industry, and other research 
facilities around the world submit their 
proposals, which are examined by an 
external program advisory committee 
LANSCE shares with the Intense Pulsed 
Neutron Source at Argonne National 
Laboratory. An internal program advi- 
sory committee also exists; it considers 
beam-time allocation for work of pro- 
grammatic interest to the Laboratory. 

Oversubscription for instrument beam 
time by a factor of 2 ~ e v e n  more on 
the Low-Q Diffractometer and the High- 
Intensity Powder Diffractometer-has 

Walter Kalceff, a user from the Department of Applied Physics, University of Technology, Sydney, 
Australia, uses the data-acquisition system for the High-Intensity Powder Diffractometer to check 
on the progress of an experiment. 

been the norm during the three years the 
LANSCE user program has been in ef- 
fect. There is no charge to researchers 
for nonproprietary experiments, but 
DOE cost-recovery rules apply to ex- 
periments not publishable in the open 
literature. 

LANSCE operates around the clock 
during the run cycles. Giving users 
directions to the facility is quite easy. 
One just says, ". . . and from the en- 
trance gate of TA-53, just continue on 
down La Mesita Road for about a mile 
until you see a pink building on your 
right." 

'"Pink?" questions the user. 
"Yes, you won't be able to miss it- 

even at night." 
And when they arrive, they note 

that the desks inside aren't made of 
gray metal and the kitchen has hot- 
pink counters. More important, they 
note that the new 18,000 square-foot 

experiment hall and the well-equipped 
data rooms are part of a facility that 
gives them a higher peak neutron flux 
on their sample than any other spallation 
source in the world. 

LANSCE has seven working neutron 
spectrometers; two more are under con- 
struction. Because an experiment team 
often includes two or three people, a 
visitor count between ten and twenty at 
any one time during the run cycles is 
not unusual. Most experiments take be- 
tween two and ten days to complete; 
powder-diffraction and small-angle- 
scattering experiments are relatively 
quick, whereas inelastic-scattering ex- 
periments may take a few weeks. Each 
user is assigned a local contactÃ‘on of 
the LANSCE scientific staff-who as- 
sists in setting up the user's experiment 
and explains the subtleties of the data- 
acquisition system. Arrangements can 
be made for the user who wishes to stay 
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on at LANSCE for a few days after the 
experiment to complete an analysis, or 
at least to get the data into a form more 
convenient for analysis back home. In 
most cases, the working relationship be- 
tween visitors and LANSCE scientists 
quickly develops into a true collabora- 
tion, one in which ideas and knowledge 
are freely exchanged. 

LANSCE provides the target assem- 
bly, the data-acquisition and -analysis 
systems, the neutron-scattering instru- 
ments, and the required support services. 
The Medium Energy Physics Division 
operates the PSR that delivers proton 
pulses to LANSCE and the WNR fa- 
cility. Support for LANSCE and PSR 
is given by the Office of Basic Energy 
Sciences of the DOE and by the Labo- 
ratory. Operation of the LAMPF accel- 
erator itself is handled by the Medium 
Energy Physics Division with support 
from the DOE-OER Office of High En- 
ergy and Nuclear Physics. 

In July 1989 the Laboratory's 
neutron-scattering center was officially 
dedicated in honor of former New Mex- 
ico Congressman Manuel Lujan, Jr. 
When now Secretary of Interior Lujan 
arrived at LANSCE for the dedication 
ceremonies, he noticed pictures of the 
early days of Los Alarnos hanging on 
the wall. Secretary Lujan went straight 
to the picture of the post exchange and 
said he worked there making sodas dur- 
ing the war. It seems appropriate that 
a research center at Los Alamos should 
be named for a native son of San Ilde- 
fonso and long-term member of the 
House Committee on Science, Space, 
and Technology. 

Conclusion 

LANSCE has demonstrated the 
unique capabilities of a high-intensity 
pulsed neutron source and has fur- 
thered the development and refine- 
ment of neutron-scattering instmmen- 
tation. It is truly an outstanding tool for 

research in many areas of condensed- 
matter science. In addition, LANSCE 
plays an important role in the techno- 
logical advancements of our society and 
provides a unique educational oppor- 
tunity for graduate students in a wide 
range of disciplines. 
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The technique of small-angle neutron scat- 

; tering illuminates length scales from tens to 

thousands of angstroms. It has been used 
to locate the different proteins (red and yel- 

/ low) in the ribosome. to orient the DNA (red) 

1 he ultimate challenge of the me scientist is to understand how the mo- 
lecular constituents of living systems carry out their biological functions. 
molecular interactions bring about and control such complicated fun 
metabolism, reproduction, defense against invading organi 
external stimuli? 

Although none of those fun od, much of the prog- 
ress so far has come e structures of the biomolecules in- 
v ' sd. In re and function are intimately related. A most strik-' 1 

. . kstrath is DNA, molecules of which contain all the genetic informa- 4.- for life. The discovery by Watson and Crick of the double-helix structure and histone (blue) components of c&r>m4(fn, 
and to determine the sh 1 in of DNA led immediately to a molecular picture of how the genetic instruc- 



. 8  , 
2: , , a 1 ,  r - %'. .Ã̂A".̂ ,. Ã̂ $z$*& : * )$. "5^.',35~.";t *i<Ã‡^ , ,*%- 

mlh cqe generation to the next "wtn teW, ir4hy,"&i4t~es.  - 
from fibers of DNA was used to uncover its elegant structure. 

Another major breakthrough in understanding structure-fu 
ships at the molecular level was the elucidation, through x-ray 
of the structures of various proteins. Proteins are the working 
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energy, they generate and transmit nerve 
impulses, they control cell differentia- 
tion and growth, they provide mechani- 
cal support, they even form tiny motors 
that propel microorganisms through their 
world much as an outboard motor pro- 
pels a boat. 

An organism manufactures a protein 
by joining together in a linear polypep- 
tide chain a certain combination of some 
twenty different amino acids. The num- 
ber of amino acids in the chain and their 
sequence, or order, along the chain are 
specified by the organism's DNA. It 
is the sequence of the amino acids that 
determines the function of a protein- 
by determining the way the polypeptide 
chain folds up into its functional struc- 
ture, or conformation. The unique con- 
formation of each protein species creates 
a unique chemical environment, which, 
in turn, may facilitate some specialized 
molecular interaction. Hence, each pro- 
tein is able to carry out its function, or 
sometimes a set of functions, faithfully. 

What tools are available for deterrnin- 
ing the structures of biological molecules 
and the functional units they compose'? 
The task is difficult because the molec- 
ular weights of the molecules are quite 
large, 1000 to 1,000,000 daltons. (Such 
large molecules are often referred to as 
macromolecules.) Nonetheless, tech- 
niques such as x-ray crystallography 
and nuclear-magnetic-resonance spec- 
troscopy have given us an exquisitely 
detailed picture of the locations of in- 
dividual chemical groups within some 
macromolecules and, in special cases, 
within macromolecular assemblies such 
as small viruses. Ideally, one would like 
to have that level of structural detail for 
all biological molecules in all functional 
states. However, after decades of effort, 
high-resolution structural data have been 
obtained for only a few hundred of the 
thousands of proteins whose amino-acid 
sequences are known, and those data of- 
ten pertain to only one functional state. 

At the level of the cell, light mi- 

croscopy has provided us with a view 
of the functioning of large assemblies 
of biological molecules. But between 
the level of individual chemical groups 
and the cellular level is another realm, 
referred to by Wolfgang Oswald in the 
1920s as "the world of neglected dimen- 
sions." Populating that realm, which 
is highlighted in the opening figure, 
are the biological units responsible for 
controlling replication and transcription 
of genetic information, manufacturing 
proteins, transmitting neural impulses, 
converting light to neural impulses, con- 
tracting muscle fibers, and so on. Even 
today that structural realm remains rel- 
atively mysterious. The functional units 
are so large, so complex, and so difficult 
to crystallize that no single technique 
is adequate to tackle the job of deter- 
mining their structures. Progress has 
been made only through the interplay of 
many different techniques. Among them 
is neutron scattering. 

The Contributions 
of Neutron Scattering 

Studies ranging from high-resolution 
neutron scattering from crystals to low- 
resolution neutron scattering from par- 
ticles dispersed in a solvent have made 
important contributions to the structural 
database in biology. High-resolution 
crystallography has provided infor- 
mation, for example, about the loca- 
tions of hydrogen atoms, and hence 
of conformation-stabilizing hydrogen 
bonds, in bioiogical molecules and about 
the structure of water molecules in the 
immediate vicinity of the surfaces of 
biological molecules. The latter infor- 
mation is important because physical 
or chemical combination of water, the 
fluid of life, with biological molecules 
influences their conformations and often 
facilitates their functions. 

At the other extreme, the structure of 
the basic subunit in the chromosome, 
namely the nucleosome (consisting of a 

Table 1 

NEUTRON SCATTERING LENGTHS 

The neutron scattering length of an atom 

is a measure of the strength of the scatter- 
ing interaction between neutrons and the 

atomic nucleus. Listed here are scattering 

lengths of atoms commonly found in biolog- 

ical molecules. (Deuterium, :H, is included 

for reasons given in the text.) Also listed are 

values for the analogous parameter in x-ray 

scattering. Note that the scattering lengths 
vary unpredictably from one atom to another 

and that the range of variation is not great. 

In contrast, the x-ray scattering factors in- 

crease monotonically with atomic number. 

Neutron 

Scattering 

Length 

( I  0-l2 cm) 

-0.38 

0.67 

0.66 

0.94 

0.58 

0.51 

x-Ray 

Scattering 

Factor 

(electrons) 

1 .o 

1 .o 

6.0 

7.0 

8.0 

15.0 

length of DNA wound around a protein 
core), was first determined by scattering 
neutrons from nucleosomes in solution. , 
Low-resolution neutron scattering is also 
being used to locate the many different 
protein species within the ribosome, 
the assembly responsible for translating 
RNA into proteins. That difficult work 
has been going on for fifteen years and 
is not yet completed. 

Neutron scattering has also contributed 
structural information that will help ex- 
plain how the transmembrane protein 
bacteriorhodopsin serves as a light- 
driven pump of protons, or hydrogen 
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ions. Bacteriorhodopsin is found in cer- 
tain primitive bacteria and is responsible 
for their ability to use light to gener- 
ate metabolic energy when oxygen is 
scarce. Absorption of light by bacterio- 
rhodopsin creates an electrochemical 
gradient across the bacterial membrane, 
which serves as the source of metabolic 
energy. Neutron diffraction revealed in 
part how the protein chain folds back 
and forth across the membrane, pre- 
sumably bringing together the chemi- 
cal groups responsible for the proton 
translocations that create the gradient, 
but more work is needed to unravel the 
exact mechanism. 

Our studies of the protein calmodulin, 
presented below, are an example of the 
use of neutron scattering to study, under 
physiological conditions, the confor- 
mational changes that occur as proteins 
carry out their functions. 

In general, neutron scattering is use- 
ful for studying biological units ranging 
in size from small proteins to animal 
viruses. Moreover, it is a particularly 
powerful tool for studying compos- 
ite entities containing more than one 
molecular species. That special power 
arises from a large difference between 
the scattering of neutrons by hydrogen 
(a major constituent of all biological 
molecules) and its neighboring isotope 
deuterium. 

The Neutron as a Probe 
of Biomolecules 

In "Neutron Scattering-A Primer," 
hereafter referred to as the primer, we 
learn that unlike x rays, which scatter 
from the electron cloud surrounding an 
atomic nucleus, neutrons scatter from 
the atomic nucleus itself. If the wave- 
length of the neutron is much larger 
than the size of the nucleus (as it is in 
all low-energy neutron-scattering exper- 
iments), then the nucleus is considered 
to be located at a point r', and the in- 
teraction between the neutron and the 

Table 2 

CONTRAST MATCHING 

When low-energy (long-wavelength) neu- 
trons scatter at small angles from biolog- 

ical molecules in solution, the parameter 

that governs the observed intensity of scat- 

tered neutrons is the "contrast" between the 

biological molecules and the solvent, that 

is, the difference between their scattering- 

length densities. Therefore, by matching the 

scattering-length density of the solvent to 

the scattering-length density of one compo- 

nent of a two-component biological macro- 

molecule, the contribution of that compo- 

nent to the observed neutron scattering can 

be eliminated. Listed here are the mean 

scattering-length densities of a nucleotide 

(DNA), a protein (histone), and lipids and the 

mean scattering-length densities of water 

(the usual solvent) containing various per- 

centages of D20. 

Mean Scattering-Length Density 

( 1 0 ' ~  cm -2 )  

DNA 

Histone 

Lipids 

0% D 2 0  

10O0/o D * 0  

xO/o D 2 0  

37% D 2 0  

63% D 2 0  

2.01 

3.81 

between -0.2 and 0.8 

nucleus can therefore be described by a 
delta-function pseudopotential, b6(r -rf) .  
The parameter b ,  the so-called scattering 
length, is related to the total scattering 
cross section of the nucleus, 47rb2. It 
turns out that the scattering lengths of 
all elements commonly found in bio- 
logical macromolecules, except hydro- 
gen, are positive and similar in magni- 
tude. In contrast, the scattering length 

of hydrogen is negative (because of a 
nuclear resonance) and equal in mag- 
nitude to about half the values of the 
scattering lengths of the other elements 
in biomolecules (Table 1).  The negative 
scattering length of hydrogen means that 
the neutrons scattered from hydrogen 
are 180' out of phase with the neutrons 
scattered from elements with positive 
scattering lengths. Both the sign and the 
relatively large magnitude of hydrogen's 
scattering length make that element far 
easier to "see" with neutrons than with 
x rays. 

In this article we will focus on small- 
angle neutron scattering from macro- 
molecules in solution. That technique 
is useful for determining overall shapes 
and sizes, molecular weights, and inter- 
nal composition variations of the large 
molecules, rather than the locations 
of individual atoms. Consequently, a 
scattering-length density (the sum of the 
scattering lengths of the nuclei within 
a volume element dV divided by the 
volume element) is relevant rather than 
individual scattering lengths. We will 
denote the scattering-length density at 
a particular point r within a particle by 
bp(r) and the mean scattering-length 
density of the particle by hp. Because 
various types of biological molecules, 
such as proteins, polynucleotides (DNA 
and RNA), and lipids (the basic con- 
stituents of membranes), contain dif- 
ferent proportions of hydrogen rela- 
tive to other elements and because the 
mean scattering-length density varies 
rapidly with the proportion of hydro- 
gen, the mean scattering-length density 
of those types of molecules differ sig- 
nificantly. Serendipitously, their mean 
scattering-length densities lie between 
those for pure H 2 0  and pure D 2 0  (Ta- 
ble 2). That fact is crucial for the pow- 
erful technique called contrast matching, 
a technique that allows us to see, for ex- 
ample, only the protein component in 
a biological assembly containing pro- 
teins and DNA or proteins and lipids. 
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Contrast Matching 

At the right is a whimsical example of 
contrast matching in which one figure 
blends into the background pattern and 
the other figure stands out. Another ex- 
ample of contrast matching, more analo- 
gous to the situation in neutron scatter- 
ing, is the viewing of black and white 
kittens playing on black or white car- 
pets. On a white carpet the black kittens 
stand out sharply, whereas the white 
kittens blend into the carpet. In other 
words, the white kittens are "contrast 
matched" to the background. The re- 
verse effect is achieved by placing the 
kittens on a black carpet. The black 
kittens are then matched to the back- 
ground, and only the white kittens are 
easily visible. In neutron scattering 
from macromolecules in solution, the 
solvent plays the part of the carpet, the 
molecules play the part of the kittens, 
and the contrast is determined by the 
difference between the mean scattering- 
length densities of the solvent and the 
molecules. 

If the molecules and the solvent have 
the same scattering-length density, the 
waves scattered from any point have the 
same amplitude and phase. When inte- 
grated over the entire sample volume, 
the scattering at any angle (other than 
zero) cancels because arriving waves 
have all phases with equal probability. 
In other words, no small-angle scatter- 
ing occurs. On the other hand, suppose 
the dispersed molecules and the solvent 
have different scattering-length densities, 
hp and bs. Each wave scattered from 
some point within a molecule may be 
thought of as a sum of two waves, one 
of amplitude hs and one of amplitude 
hp - bs. The waves of amplitude hs can- 
cel with the waves of equal amplitude 
scattered from the solvent, whereas the 
waves of amplitude hp - hs interfere con- 
structively or destructively with other 
waves scattered from other points within 
the molecule. As described below, con- 

Nhen the monster came, Lola, like the peppered moth and the arctic 
hare, remained motionless and undetected. Harold, of course, was 
immediately devoured. 

structive interference of those waves oc- 
curs mostly at small angles about the 
direction of the incident neutrons. Thus 
the name small-angle scattering is ap- 
plied to the phenomenon. The observed 
intensity of the scattered neutrons is 
equal to the square of the amplitude of 
the scattered waves and is thus propor- 
tional to (bp - hs)2. 

Now consider a particle composed of 

two subunits, each with a different mean 
scattering-length density. By varying 
the D2O-to-H20 ratio in the solvent, 
the scattering-length density of the sol- 
vent can be matched to that of one of 
the subunits. Then most of the observed 
scattering is due to the other subunit. 
Contrast matching was the technique 
used in the 1970s to elucidate the struc- 
ture of the nucleosome, which contains 
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DNA and proteins. At that time it was 
not clear whether the protein component 
of the nucleosome was outside or in- 
side the DNA component. The DNA 
component has the same scattering- 
length density as a solvent containing 
approximately 63 percent D20, whereas 
the protein component has the same 
scattering-length density as a solvent 
containing approximately 37 percent 
D20. Neutron-scattering data obtained 
at each of those match points, as well 
as at other solvent scattering-length den- 
sities, gave information on the relative 
orientation of the two components and 
led to the model shown in Fig. 1. 

Many biochemical units contain pro- 
tein species whose mean scattering- 
length densities are so similar that the 
technique of contrast matching is not di- 
rectly applicable. The ribosome in the 
opening figure is an example. However, 
the range of variation among protein 
species can be increased by replacing 
some of them with "deuterated" ver- 
sions. A deuterated version of a pro- 
tein, as you might guess, contains deu- 
terium rather than hydrogen. It can be 
prepared in various ways. For exam- 
ple, if the protein of interest is a bac- 
terial protein, the bacterium is simply 
cultured on a medium containing D2O 
rather than H20. As the bacterium mul- 
tiplies, it produces deuterated versions 
of various proteins, including the pro- 
tein of interest. The locations of the 
different protein species in a bacterial 
ribosome were determined by small- 
angle neutron-scattering studies on a 
set of ribosomes, each of which had 
been reconstituted with deuterated ver- 
sions of two protein species prepared 
in the above manner. (Deuterated ver- 
sions of nonbacterial proteins can be 
obtained by using recombinant DNA 
technology. Clones of the gene for the 
protein of interest are first combined 
with the DNA of a bacterium. The 
bacterium is then cultured as above, 
and the protein of interest harvested.) 

Los Alamos Science Summer 1990 

THE NUCLEOSOME: A TWO-COMPONENT SYSTEM 

Fig. 1. The nucleosome, the basic subunit of chromosomes, contains DNA and proteins known 
as histones. That the DNA was wrapped around the proteins, rather than vice versa, was first 
deduced by using contrast matching to measure separately the small-angle neutron-scattering 
profiles of the DNA and the protein components. 

Small-Angle Neutron Scattering 

Figure 2 shows the experimental 
setup for small-angle neutron-scattering 
experiments. A sample of particles dis- 
persed in a small volume (of the order 
of 100 cubic millimeters) of solution is 
placed in the neutron beam, and a de- 
tector located several meters away mea- 
sures the intensity of the neutrons scat- 
tered through various angles % relative 
to the direction of the incident beam. 
To protect the detector, a small beam 
stop (a few square millimeters) absorbs 
the unscattered neutrons-as well as 
those scattered through zero degrees 
and through angles very close to zero. 
The intensity of the scattered neutrons 

(represented by shades of gray in Fig. 
2) varies with the scattering angle and, 
if the dispersed particles are randomly 
oriented, is isotropic about the beam 
axis. Figure 2 shows a peak in intensity 
centered at zero degrees and extending 
over a small range of scattering angles. 
(Note that the beam stop prevents direct 
observation of the intensity at scatter- 
ing angles equal and very nearly equal 
to zero. Instead I(0) is determined by 
extrapolation of the observed scatter- 
ing profile.) Such a peak occurs if the 
wavelength of the incident neutrons, A, 
is small compared with the particle size 
and large compared with internuclear 
distances. The peak is produced by 
constructive interference of waves scat- 
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SMALL-ANGLE 
NEUTRON SCATTERING 

Fig. 2. In a small-angle neutron-scattering 

experiment a detector located relatively far 
from the sample records the intensity I of 

the scattered neutrons as a function of scat- 

tering angle 20. l(0) cannot be measured 

directly because the neutrons scattered 

through zero degrees are coincident with 

the unscattered neutrons. Both are absorbed 

by a small beam stop coaxial with the inci- 

dent beam. The observed scattering profile 

(graph of 1 versus 20) at very small scatter- 

ing angles contains information about the 

size and shape of the particles in the sam- 

ple. For example, the width of the scattering 

profile varies inversely with the size of the 

scattering particles. In the case of spheri- 

cal particles, the maximum separation be- 
tween scattering points for which interfer- 

ence may occur is the particle diameter (i). 

Integration over the particle volume yields a 

scattering profile that is approximately Gaus- 

sian (at small angles) with a full width at half 

maximum (FWHM) of (1.14) (2A/i). The fig- 

ure shows the condition for constructive 

interference between the scattered waves 

from a pair of nuclei separated by a dis- 

tance i: the difference between their path 

lengths, f! sin 20, must equal A, the wave- 

length of the incident neutrons. For small 

angles sin 20 w 20, so the condition for con- 

structive interference becomes 20 w \/Â£ 

tered from pairs of nuclei within each 
particle, which occurs when the differ- 
ence in path length of the two scattered 
waves is equal and nearly equal to an 
integral multiple of A. Now the waves 
scattered at most angles from the many, 
many pairs of nuclei within the parti- 
cle will tend to cancel out and produce 
a very small signal. Only the waves 
scattered at small angles (for which the 
path-length differences are also small) 

will tend to add up and produce a large 
peak. The shape of the peak contains 
information about the size of the parti- 
cles. For example, as shown in Fig. 2, 
the width of the peak (at half maximum) 
varies approximately inversely with the 
diameter of the particles. 

To explain how we extract more exact 
quantitative information from the small- 
angle scattering profile, we build on the 
discussion in the primer. Consider the 
scattering in vacuum of neutrons from a 
particle whose scattering-length density 
is described by bp(r). Equation 4 in the 
primer states that the scattering profile 
of the neutrons is given by 

where Q = kiniiial - kfinai is the scattering 
vector, Q = IQI = 27rsin6/X,d3r is a 
volume element, and Vp is the volume 
of the particle. Suppose now that the 
neutrons are scattered from a particle 
in a matrix of uniform scattering-length 
density bs. Then Eq. 1 becomes 

(The quantity hp(r) - hs in Eq. 2 is 
called the contrast factor.) If, as is gen- 
erally the case, the neutrons are being 
scattered by more than one particle, the 
integral in Eq. 2 must be multiplied by 
the number of particles Np (provided the 
particles are identical). For simplicity, 
that multiplicative constant is not explic- 
itly given in the equations that follow. 

By using the fact that, for any com- 
plex number z, lz l 2  = zz * (where z * 
is the complex conjugate of z), Eq. 2 
becomes 

The scattering of neutrons from bi- 
ological molecules in solution is gen- 
erally spherically averaged because the 
molecules are generally randomly ori- 
ented. The spherical average of Eq. 3 
can be expressed in terms of a so-called 
pair-distribution function P (R), where 
R = lr - r l [ :  

where dm= is the maximum dimension 
of the particles. (The transition from 
Eq. 3 to Eq. 4 is more easily compre- 
hended by recalling that the spherical 
average of eix is sinx/x.) The pair- 
distribution function P(R) in Eq. 4 is 
a weighted frequency distribution of 
the distances lr - rll between all pairs 
of scattering centers (that is, nuclei); 
each frequency is weighted by the factor 
(fop(r) - hs)(hp(rl) - bs). 

Implicit in the derivation of Eq. 4 are 
several important assumptions: (1) all 
the particles in the solution are identical; 
(2) the particles are randomly oriented; 
(3) the concentration of the particles is 
sufficiently low that neutrons scattered 
by different particles do not interfere 
with each other; and (4) therrnodynam- 
ically, the solution is a two-component 
system consisting of particles dissolved 
in a homogeneous solvent. 

Structural information about the par- 
ticles is deduced from an analysis of 
P(R), which is determined by measuring 
I (Q) and calculating the inverse Fourier 
transform of Eq. 4: 

P (R) = - I (Q )QR sin(QR)dQ . 2:2 im 
(Although Eq. 5 indicates that the inte- 
gration should extend from zero to infin- 
ity, 1(Q) can be measured only over a 
finite Q range. That experimental lim- 
itation can introduce truncation errors 
into the calculated P(R). Also note that 
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I(Q) is measurable only if Np is rela- 
tively large.) One piece of information 
obtained from P(R) is the overall shape 
of the scattering particle. For a spheri- 
cal particle of uniform scattering-length 
density, P(R) is symmetric (Fig. 3a). It 
has a maximum near a value of R equal 
to the radius of the sphere and falls to 
zero at R = 0 and at an R value equal 
to the sphere's diameter. As the parti- 
cle becomes more asymmetric, so does 
P(R). Figure 3b shows pair-distribution 
functions for several two-lobed particles 
with uniform scattering-length density. 
Note that those functions are quite sen- 
sitive to the relative dispositions of the 
two lobes. In all cases P(R) = 0 for all 

(a) Single-Lobed Objects 

Prolate Ellipsoid 

(b) Two-Lobed Objects 

R values greater than the maximum dis- 
tance between scattering centers within 3 -  3 -  

the particle, and hence one can esti- 
mate the maximum dimension of the 
molecule, dmax. 

Although P(R) is a complicated func- a 
tion of R, its integral over R is simply 

2 
[(bp - bs)vp] , the square of the mean 
contrast factor times the particle vol- I I 

ume. Moreover, according to Eq. 3 
0 20 40 60 80 0 20 40 60 80 100 

the intensity of the .neutrons scattered 
R R 

through zero degrees, I (O), is also equal 
to [(Ãˆ - b , ) ~ ~ ] :  

I(0) is one of the most commonly 
cited small-angle neutron-scattering pa- 
rameters. Since the neutrons scattered 
through zero degrees are coincident with 
the unscattered beam, I(0) cannot be 
measured directly. Instead, I(0) is de- 
termined by extrapolating the measured 
scattering profile to 28 = 0 (see below). 
By determining I(0) at different values 
of bs, we can determine hp and Vp. In 
particular, according to Eq. 6 a plot of 

PAIR-DISTRIBUTION FUNCTIONS FOR OBJECTS OF DIFFERENT SHAPE 

Fig. 3. General structural features of an object are reflected in its pair-distribution function P(R), 
which is determined from its small-angle neutron-scattering profile. If the object has a uniform 
scattering-length density, P(R) is proportional to the frequency distribution of the distances 
R between pairs of scattering centers (nuclei). Shown here are pair-distribution functions for 
objects of uniform scattering-length density and various shapes. (a) The pair-distribution func- 
tions for a sphere and a prolate ellipsoid show that the asymmetry of P(R) increases with the 
asymmetry of the object's shape. (b) The pair-distribution functions for various two-lobed ob- 
jects demonstrate the sensitivity of P(R) to the relative orientation of the two lobes. 
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\/70 versus bs is a straight line with a 
slope of -Vp and an intercept with the 
bs axis of by. Also, because the molec- 
ular weights of proteins are approxi- 
mately proportional to their volumes, 
I(0) serves as a check that proteins in a 
sample are dispersed as single particles 
rather than as aggregates. 

Another commonly cited parameter 
is Rg, the radius of gyration, which is 
defined by the equation 

The radius of gyration of neutron scat- 
tering is analogous to the radius of gyra- 
tion of classical mechanics, which is de- 
fined by an equation exactly like Eq. 7 
except that a mass density replaces the 
contrast factor. (The numerator and de- 
nominator in Eq. 7 are analogous, re- 
spectively, to the moment of inertia 
and the mass of classical mechanics.) 
The radius of gyration can also be de- 
termined as the second moment of the 
pair-distribution function: 

Using P(R) to calculate Rg makes use 
of scattering data over the entire mea- 
surable Q range. 

An alternative method for calculat- 
ing Rg was developed by Guinier. He 
showed that the innermost portion of the 
scattering profile can be approximated 
well by a Gaussian curve: 

The value of RgQ below which the 
Guinier approximation is valid depends 
on the particle shape; typically, how- 
ever, it is valid for RgQ < l. Equa- 
tion 9 implies that a plot of lnI(Q) ver- 
sus Q~ is a straight line with a slope 
of - and an extrapolated intercept 

with the In1 (Q) axis of lnI(0). Guinier 
analysis is a common method for deter- 
mining I(0) as well as Rg. Later, when 
we present neutron-scattering data for a 
two-protein system at various contrast 
factors, we will see how an analysis of 
the variation of Rg with contrast factor 
allows us to deduce the relative posi- 
tions of the two components, provided 
they have different mean scattering- 
length densities. 

The theory for small-angle x-ray scat- 
tering is essentially the same as the 
theory presented here for small-angle 
neutron scattering except that x-ray scat- 
tering factors are substituted for neu- 
tron scattering lengths. X-ray scatter- 
ing factors increase monotonically with 
the number of electrons in the electron 
cloud surrounding the atomic nucleus 
(that is, with the atomic number of the 
atom), and, because the dimensions of 
the electron cloud are of the same order 
as the wavelength of the x rays, they 
decrease with increasing scattering an- 
gle. Isotopes of the same element scat- 
ter x rays identically (because the num- 
ber of electrons remains the same), and 
there are no negative x-ray scattering 
factors. Hence, although the scattering 
factor of a solvent can be changed by, 
for example, adding glucose or sucrose, 
the mean scattering factor of one com- 
ponent of a two-component biological 
assembly cannot be changed by isotopic 
substitution. However, x rays are easier 
and cheaper to produce than neutrons, 
and, when feasible, x-ray scattering is 
used to complement neutron scattering. 

One final point. We mentioned above 
that neutron scattering from particles 
randomly oriented in solution yields 
only spherically averaged information 
about particle structure. One way to in- 
crease the information content of the 
scattering profile is to orient the parti- 
cles along some direction in space. The 
sidebar "Ferrofluids-A New Alignment 
Technique" discusses a new method for 
orienting biological assemblies in so- 

lution, which promises to yield more 
detailed structural information. 

All the neutron-scattering experi- 
ments to be described below were per- 
formed at the Laboratory's pulsed neu- 
tron source (see "LANSCE-A Facility 
for Users") with the Low-Q Diffrac- 
tometer (LQD), an instrument optimized 
for biological applications. Because the 
detector must be placed far from the 
sample to measure the neutron-scattering 
profile with high angular resolution and 
because biological molecules are in- 
herently weak neutron scatterers, the 
flux of neutrons incident on the sample 
must be as large as possible to achieve 
a measurable intensity of scattered neu- 
trons at the detector. The LQD is de- 
signed to maximize the incident flux and 
yet permit intensity measurements at 
very small scattering angles. The small- 
est angle at which useful intensity data 
can be obtained determines in part the 
largest particles that can be studied with 
the instrument. 

The Q range measured with the LQD 
(0.002-0.5 angstrom') covers small- 
angle scattering from objects with di- 
mensions from tens to thousands of 
angstroms. The wide Q range also al- 
lows use of the LQD for low-resolution 
diffraction measurements. (Diffrac- 
tion from plant viruses is discussed in 
"Ferrofluids-A New Alignment Tech- 
nique.") Moreover, unlike the case at 
steady-state neutron sources, all of those 
measurements can be made without re- 
configuring the instrument. 

Calmodulin and 
Biochemical Regulation 

In the remainder of this article, we 
will focus on structural studies of the 
protein calmodulin, which mediates 
the regulatory effect of calcium ions on 
many biochemical processes. Through 
a combination of small-angle neutron 
and x-ray scattering, we have begun to 
study the conformational changes that 
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CALCIUM REGULATION 
MEDIATED BY CALMODULIN 

Fig. 4. Calcium ions, ca2+, regulate many in- 
tracellular processes, and many of the regu- 
latory functions of ca2+ are mediated by the 
protein calmodulin. That is, a local increase 
in ca2* concentration causes ca2* to bind 
to calrnodulin, and the ca2^-calmodulin com- 
plex binds to a target enzyme and thereby 
activates a catalytic site on the enzyme. The 
activated target enzyme then catalyzes, or 
speeds up, a biochemical reaction, such as 
the addition of phosphate groups to some 
protein. Regulation by ca2* through calmod- 
ulin is involved in such processes as muscle 
contraction, transmission of nerve impulses, 
the degradation of glycogen to glucose, and 
cell division. 

calmodulin undergoes as it carries out 
its function as mediator. But before we 
get ahead of the story, let's focus on the 
process of regulation. 

Living systems must regulate a myr- 
iad of interdependent biochemical pro- 
cesses. In other words, processes must 
be turned on and off or slowed down 
and speeded up as needed. Regula- 
tion generally involves the interaction 
of small messenger molecules or ions 
with proteins. The messengers fall nat- 
urally into three major classes defined 
by the time scale of the processes they 
control: hormones regulate intercellular 
processes that occur on time scales of 
days to hours; small organic molecules 
known as cyclic nucleomonophosphates 
(cyclic AMP, for example) regulate in- 
tracellular processes that occur on time 
scales of minutes to seconds; and the 
divalent (doubly charged) calcium ion, 
ca2+, regulates a large number of di- 
verse intracellular processes that occur 
on time scales of seconds to millisec- 
onds. Among the ca2+-regulated pro- 
cesses are mitosis (cell division), the 
degradation of glycogen (the storage 

1. Calcium-ion concentration 
increases : 

Calcium Ions Calmodulin 
m e .  

Â 0 
2. Calcium ions bind to calmodulin, 
forming Ca2+-calmodulin complex 

3. Ca2+-calmodulin binds to and 
activates target enzyme 

Inactive 
Target Enzyme 

Activated 
Target Enzyme 

4. Activated target enzyme catalyzes 
biochemical reaction, such as 
phosphorylation > CATALYSIS 

Phosphate 

Phosphorylated 
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form of glucose) to glucose, muscle 
contraction, .and transmission of nerve 
impulses. All those processes are reg- 
ulated by localized changes in the con- 
centration of calcium ions. 

The question of how the simple cal- 
cium ion can regulate so many types 
of processes has attracted an enormous 
amount of attention. Many of the reg- 
ulatory effects of ca2+ are mediated 
by the protein calmodulin. Binding of 
ca2+ to calmodulin is thought to induce 
some kind of conformational change 
that enables ca2+-calmodulin to bind 
to and thereby activate a "target" en- 

zyme. The activated target enzyme then 
catalyzes a biochemical reaction. The 
activated catalytic site on the target en- 
zyme is sometimes far from the ca2+- 
calmodulin-binding site, and the mech- 
anism of such "activation at a distance" 
is unknown (Fig. 4). We do know that 
ca2+-calmodulin can activate many dif- 
ferent target enzymes (one at a time). 
Moreover, the constancy of the arnino- 
acid sequence of calmodulin through- 
out evolution suggests that sequence 
changes almost anywhere in calmodulin 
are fatal to the organism and must there- 
fore destroy key functions. Thus, the 
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sites for binding to different target en- 
zymes may be distributed over the entire 
calmodulin molecule, and the activation 
mechanism may vary from one target 
enzyme to another. 

What features of calmodulin's struc- 
ture allow it to support such diverse ac- 
tivities? Calrnodulin is a water-soluble 
protein, and most such proteins fold 
into globular structures that minimize 
the number of hydrophobic amino-acid 
residues exposed to water. But x-ray- 
diffraction data for ca2+-calmodulin 
(calmodulin without ca2+ has not yet 
been crystallized) show that the polypep- 
tide chain folds into two globular lobes 
connected by an extended a helix of 
about eight turns (Fig. 5). Two ca2+- 
binding sites are found in each globular 
lobe, and all four ca2+-binding sites 
have a high degree of structural similar- 
ity with each other and with the ca2+- 
binding domains of other ca2+-activated 
regulatory proteins, such as parvalbumin 
and troponin C. 

The a helix connecting die two glob- 
ular domains of calmodulin is presumed 
to be important in its interactions with 
target enzymes. Consequently, it has 
been the subject of considerable interest. 
Helical structures in more compact pro- 
teins are stabilized by intramolecular or 
sometimes intermolecular interactions. 
However, the crystal packing of ca2+- 
calmodulin shows no evidence of any 
such stabilizing interactions. So what 
happens to the a helix under physio- 
logical conditions? Is it stable in the 
extended conformation of the crystal 
form, or is it flexible and able to twist 
or bend? 

The two-lobed structure of ca2+- 
calmodulin is an ideal subject for study 
by both x-ray and neutron scattering 
because the scattering data are quite 
sensitive to the relationship between the 
two globular domains. Moreover, when 
coupled with the techniques of selec- 
tive deuteration and contrast matching, 
neutron scattering allows us to see the 

CRYSTAL STRUCTURE OF ca2+-CALMODULIN 

Fig. 5. The structure of crystalline ca2+-calmodulin was deduced from x-ray diffraction data for 
calmodulin crystallized at low pH and in the presence of ca2+. The structure is depicted here in 
a model of calmodulin's backbone superimposed on a space-filling model (left). The structure 
consists of two globular lobes connected by an extended a helix of about eight turns. Located 
on each globular lobe are two ca2+-binding sites (red). The basic structure of all four ca2+- 
binding sites is the same (right). 

shape of ca2+-calmodulin when it is 
bound to a target enzyme. 

X-Ray Studies- 
The Solution Structure 

My colleagues and I have gathered 
small-angle x ray-scattering data that re- 
veal differences between the crystal and 
solution structures of Ca2+-calmodulin 
and between the solution structures of 
calmodulin and ca2+-calmodulin. 

First we gathered small-angle x-ray- 
scattering data for calrnodulin dispersed 
in a solution containing enough calcium 

ions to saturate its ca2+-binding sites. 
Figure 6 compares the pair-distribution 
function derived from those data with 
two theoretical pair-distribution func- 
tions. Both theoretical pair-distribution 
functions were based on the same pat- 
tern of scattering centers, namely the 
pattern deduced from the reported crys- 
tal structure of ca2+-calmodulin. How- 
ever, in one case the portion of the pat- 
tern representing the a helix was al- 
lowed to be flexible so that on aver- 
age the two globular lobes are closer 
together than in the crystal form. It 
should be pointed out that a uniform 
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density of scattering centers within 
calmodulin would yield similar theo- 
retical pair-distribution functions. Thus 
calmodulin is fairly well approximated 
as a molecule of uniform scattering- 
length density. 

As expected, all the pair-distribution 
functions in Fig. 6 bear some resem- 
blance to the pair-distribution functions 
for double-lobed, uniform-density struc- 
tures shown in Fig. 3b. Note that the 
experimental P(R) falls to zero at a 
smaller R value than does the P (R) 
based on the (inflexible) crystal struc- 
ture. Therefore the solution structure 
of Ca2+-calmodulin has a smaller max- 
imum dimension than does the crystal 
structure. More important, the exper- 
imental P(R) lies below the P (R) for 
crystalline Ca2+-calmodulin at large R 
values and has no saddle at interme- 
diate R values. In other words ca2+- 
calmodulin in solution has fewer widely 
separated scattering centers and more in- 
termediately separated scattering centers 
than does crystalline Ca2+-calmodulin. 
On the other hand, the P(R) based on 
a flexible a helix agrees well with the 
experimental P(R). Thus the x-ray- 
scattering studies indicate that in solu- 
tion the interconnecting helix in ca2+- 
calmodulin is flexible and the glob- 
ular lobes are, on average, about 10 
angstroms closer together. 

We repeated the x-ray studies, this 
time eliminating Ca2+ from the solution. 
Using both the pair-distribution func- 
tion and Guinier analysis (Eqs. 8 and 
9), we found that the radius of gyration 
of calmodulin is 5 percent smaller than 
that of ca2+-calmodulin. From com- 
plementary chemical studies we know 
that the increase in Re due to binding 
of ca2+ results in the exposure of hy- 
drophobic regions in each globular lobe. 
Those nonpolar regions are thought to 
be important in the interactions of Ca2+- 
calmodulin with target enzymes. 

The issue of the flexibility of calmod- 
ulin's a helix remains controversial, 
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X-RAY RESULTS FOR ~a^-CALMODULIN IN SOLUTION 

Fig. 6. Shown here is the pair-distribution function calculated from small-angle x-ray-scattering 
data for calmodulin in a solution containing sufficient ca2+ to saturate calmodulin's ca2+- 
binding sites. Also shown are two theoretical pair-distribution functions and the pattern of 
scattering centers on which each is based. The crystal-structure scattering-center pattern was 
deduced from the crystal structure of ~a^-calmodulin; the flexible-model scattering-center pat- 
tern is identical except that the portion corresponding to calmodulin's Interconnecting helix is 
allowed to be flexible rather than rigid. The fact that the pair-distribution function based on the 
flexible model more closely matches the experimental pair-distribution function suggests that in 
solution calmodulin's interconnecting helix is flexible. 

in part because more than one struc- 
ture may be consistent with the pair- 
distribution function obtained from the 
spherically averaged scattering data. To 
pin down the solution structure more 
precisely, we have attempted a novel 
experiment in which ^pu3+ is bound 
to the ca2+-binding sites in calmodulin. 
The triply charged ion of plutonium- 
240 has the same ionic radius as ca2+, 
and we have shown that it can substitute 
for ca2+ in studies of biochemical pro- 
cesses dependent on ca2+-calmodulin. 
Plutonium-240 was chosen as a sub- 
stitute for ca2+ because 0.28-angstrom 

neutrons form a short-lived bound state 
with plutonium-240 and thus have a 
much greater probability of scatter- 
ing from plutonium-240 than from the 
other nuclei in calmodulin. That "reso- 
nan t  scattering gave rise to a measur- 
able interference pattern that directly 
reflects the distances between the ca2+- 
binding sites. With some further re- 
finement the experiment will provide 
crucial infoimation about the relation- 
ship between the two lobes. In addi- 
tion, the small-angle scattering from 
pu3+-calmodulin showed that it has 
the same structure as Ca2+-calmodulin. 
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REGULATION OF MUSCLE 
CONTRACTION BY ca2+, 
CALMODULIN, AND MLCK 

1. Calcium-ion concentration 
increases 

Calcium Ions 
Â : 

Fig. 7. Muscle contracts (and relaxes) as fil- 
aments of myosin and actin slide past each 
other. One molecular mechanism that en- 
ables the sliding motion involves calmodulin 
and the enzyme myosin light-chain kinase. A 

local increase in ca2+ concentration causes 
binding of ca2* to calmodulin, and the re- 
sulting ca2+-calmodulin binds to MLCK and 
thereby activates a catalytic site on the en- 
zyme. The activated MLCK then catalyzes 
the phosphorylation of a subunit of myosin, 
which enables the relative motion of myosin 
and actin. 

2. Calcium ions bind to 
calmodulin 

Calmodulin 

c$+ -calmOdulin rn :) Complex Inactive Myosin . . 

3. ca2+-calmodulin binds to 
and activates myosin 
light-chain kinase 

Activated Myosin 

Exposed Light-Chain 
Catalytic Kinase 

Neutron Studies-The Inter- 
action with Target Enzymes 

4. Activated myosin light-chain 
kinase catalyzes phosphorylation 
of mvosin liaht chains in muscle fiber 

Although x-ray and chemical studies 
by us and others have yielded knowl- 
edge about the structural changes in 
calmodulin that result from binding of 
calcium ions, much less is known about 
the molecular interactions of Ca2+- 
calmodulin with its various target en- 
zymes. The difficulties associated with 
isolating large quantities of purified tar- 
get protein and the very high molecular 
weights of most target enzymes are ma- 
jor obstacles to structural studies. 

Myosin light-chain kinase (MLCK) 
from rabbit skeletal muscle is one of 
the best characterized of the enzymes 
activated by ca2+-calmodulin. When 
ca2+-calmodulin binds to MLCK, the 
enzyme catalyzes the binding of phos- 
phate groups to a subunit of the mus- 
cle protein myosin. The "phosphoryla- 
tion" of myosin is thought to induce a 
twitch response in muscle cells (Fig. 7). 
The domain of MLCK to which Ca2+- 
calmodulin binds was the first such do- 
main to be identified and sequenced. 
It consists of twenty-seven amino-acid 
residues located toward one end of the 
polypeptide chain. A synthetic polypep- 
tide with an amino-acid sequence iden- 

Phosphate Groups . : *.- Actin Filament 

Myosin Light Chains ---.- 3 
5. Phosphorylation induces 
contraction of muscle fiber 
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Contrast Variation 

NEUTRON CONTRAST-VARIATION DATA FOR ca2+-CALMODULIN-MLCK-1 

Fig. 8. Small-angle neutron-scattering data for ca2+-calmodulin complexed with the synthetic 

peptide MLCK-1 were obtained at different contrast factors by varying the percentage of D20 in 

the solvent. Since the calmodulin was deuterated, the contrast factor was greatest when the 

solvent was pure HoO and progressively decreased as the percentage of D20 was increased. 

Consequently, the maximum intensity decreases as the D20 content of the solvent increases. 

MLCK-1 is contrast matched to a solvent containg 37 percent D20; therefore the observed scat- 

tering at that DyO content is dominated by scattering from calmodulin. The figures alongside 

the data represent by shades of gray the scattering contrast among solvent, ~a+-calmodulin, 

and MLCK-1. 

tical to that of the MLCK binding do- 
main has been used in several instances 
as a model for studying the interaction 
between MLCK and ~ a - c a l m o d u l i n .  
The synthetic polypeptide, referred to 
as MLCK-I, has been shown to bind 
one-to-one and with high affinity to 
ca2+-calmodulin. Moreover, binding of 
the synthetic polypeptide inhibits Ca2+- 
calmodulin from activating MLCK and 
other target enzymes. Thus the binding 
of MLCK-I appears to be a good model 
for the binding of the entire enzyme. 
We knew, from circular-dichroism (se- 
lective absorption of circularly polarized 



Biology on the Scale . . . 

light) and nuclear-magnetic-resonance 
studies of calmodulin and MLCK-I, 
that upon binding, MLCK-I assumes 
an a-helical conformation and ca2'"- 
calmodulin undergoes global structural 
changes. However, those studies did not 
provide details of the final structures of 
the two components of the complex. 

We decided to do some small-angle 
x-ray- and neutron-scattering experi- 
ments to determine the relative positions 
of the two components in the complex 
as well as the overall shape changes that 
occur on binding. Our initial guess was 
that the structure of ca2+-calmodulin 
in the complex might be more like its 
crystal structure because of stabiliz- 
ing interactions between the a helix of 
MLCK-I and the interconnecting a helix 
of calmodulin. 

We collected neutron-scattering data 
for the complex formed by MLCK-I and 
~ a - c a l m o d u l i n  in five aqueous sol- 
vents containing various percentages of 
D20. By using deuterated calmodulin, 
we ensured that Ca2+-calmodulin and 
MLCK-I had different mean scattering- 
length densities. Figure 8 shows plots 
of I (Q) versus Q~ for the five solvents 
and the Fourier transforms of the pair- 
distribution functions fitted to the data 
(solid lines). Because the 37-percent 
DsO solvent has approximately the same 
scattering-length density as MLCK-I, 
the solid line for the 37-percent D 2 0  
solvent is a first-order approximation 
to the Fourier transform of the pair- 
distribution function for the complexed 
cab-calmodul in alone. 

We also collected neutron-scattering 
data for deuterated ca2+-calmodulin in 
pure H 2 0  in the absence of MLCK- 
I. As shown in Figure 9a, the pair- 
distribution function for ~ a - c a l m o d u l i n  
deduced from the neutron-scattering data 
is asymmetric and indicates an elon- 
gated structure consistent with the flex- 
ible model. Note also that Figure 9a is 
similar the pair-distribution function for 
ca2+-calmodulin in solution deduced 

(a) ca2+-calmodulin 

(b) ~ a ~ + - ~ a l m o d u l i n - ~ ~ ~ ~ - l  

NEUTRON R E S U L T S  FOR ca2+-CALMODULIN AND ca2+-CALMODULIN-MLCK-1 

Fig. 9. The pair-distribution function for ca2+-calmodulin (a) resembles that of a double-lobed 

structure, whereas the pair-distribution function for ~ a + - c a l m o d u l i n - ~ ~ ~ ~ - l  (b) resembles that 

of a spherical structure. Apparently when ca2+-calmodulin binds to the peptide, the lobes of 

calmodulin bend around the peptide. Both pair-distribution functions were deduced from small- 

angle neutron-scattering data. The solvent in both cases was pure H20. 

from x-ray-scattering data (see Fig. 6). 
The differences that do exist can be 
attributed mostly to differences in the 
Q range measured but also to differ- 
ences between the neutron scattering- 
length density and the electron den- 
sity of ca2+-calmodulin. Both x-ray 
and neutron data support very similar 

structures for ca2+-calmodulin in solu- 
tion. 

Now compare Figure 9a with Fig. 9b, 
the pair-distribution function for ca2+- 
calmodulin when it is compexed with 
MLCK-I in pure H20.  The result is a 
surprise. Rather than becoming more 
like the crystal form, the structure of the 
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complexed ca2+-calmodulin becomes 
much more like a sphere, and its maxi- 
mum dimension decreases by about 30 
percent. Moreover, the radius of gyra- 
tion of the Ca2+-calmodulin-MLCK-I 
complex is much smaller than that of 
Ca2+-calmodulin. 

The data set in Fig. 8 contains much 
more structural information than do data 
obtained from a single solvent. In par- 
ticular, through a method of analysis 
developed by Stuhrmann, the relative 
dispositions of the two proteins in the 
Ca2+-calmodulin-MLCK-I complex can 
be deduced. We begin by determining 
values for Ri  and dm= from each pair- 
distribution function (Table 3). Note 
that the values of R; and & vary 
as the percentage of D 2 0  in the sol- 
vent varies. The smallest d,,,=, at 37- 
percent DzO (where MLCK-I does not 
contribute to the scattering), character- 
izes the maximum dimension of Ca2+- 
calmodulin when it is bound to MLCK- 
I. The variation of dm= among the re- 
sults for the other solvents (to which 
both Ca2+-calmodulin and MLCK-I con- 
tribute) reflects relatively large uncer- 
tainties arising from the finite range of 
Q for which we can measure I(Q). 

The variation in Rg is more interest- 
ing. As the solvent is varied, the con- 
trast factor for each component in the 
complex changes, and so does the rel- 
ative contribution of each component 
to Rg.  Changes in Rg thus reflect varia- 
tions in scattering-length density within 
the complex. Stuhrmann's method in- 
volves separating Ri into a term that is 
independent of variations in scattering- 
length density, R;, and terms that are 
not. That is, 

where be = by - be,, the mean con- 
trast factor of the whole complex. Rv 
can be interpreted as the radius of gyra- 

- - - 

Table 3 

VARIATION OF STRUCTURAL PARAMETERS WITH CONTRAST FACTOR 

Analysis of the pair-distribution function derived from small-angle neutron-scattering data pro- 
vides the structural parameters /(O), Rg, and dmax. Listed here are values of those parameters 
for ~a^-calmodulin dispersed in HgO and for cahdeuterated calmodulin-MLCK-l dispersed in 
water containing various percentages of D20. As discussed in the text, the variation of Rg with 

contrast factor contains further structural information. 

Percentage 

D20 

tion of the complex at infinite contrast, 
that is, when the complex has a uniform 
scattering-length density, or no variation 
in scattering-length density. Thus, Rv 
is a measure of the overall shape of the 
whole complex and remains constant as 
the mean contrast factor is varied. The 
coefficient a is related to the second 
moment of (bp(r) - bs) about the mean 
and therefore measures the change of 
scattering-length density with distance 
from the center of scattering power. 
The coefficient Q is related to the square 
of the first moment of (bp(r) - bs) and 
measures the separation between the 
centers of scattering power of the two 
scattering components. 

To determine R v , a ,  and 0, we fit 
a parabola to a plot of R: versus b;'. 
Obviously we must know bc, and there- 
fore bp,  to perform the Stuhrmann anal- 
ysis. We mentioned earlier that bp can 
be determined from a linear fit to a plot 
of v//o versus bs. 

We applied the Stuhrmann analy- 
sis to the values of Rg listed in Table 
3. We obtained a positive value for 

a, which indicates that the component 
with the higher scattering-length density 
(deuterated ca2+-calmodulin) is situated 
more toward the outside of the com- 
plex and the component with the lower 
scattering-length density (MLCK-I) is 
situated more toward the inside of the 
complex. The nonzero value derived for 
Q indicates that the centers of scatter- 
ing power of the two proteins are not 
coincident. 

The values we derived for a,  0, and 
Rv from the Stuhrmann analysis had 
large errors. The mean contrast fac- 
tors of all the samples we studied were 
positive because bp, the mean scattering- 
length density of the complex containing 
deuterated ca2+-calmodulin and MLCK- 
I exceeded the scattering-length density 
of pure D20. As a result, we calculated 
Rv by extrapolation rather than by in- 
terpolation. The resulting uncertainty in 
Rv results in large errors in a and /3. 

Nevertheless, our qualitative results 
for a and Q are consistent with the 
idea that, when MLCK-I interacts with 
Ca2+-calmodulin, MLCK-I binds near 
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calmodulin's interconnecting helix and 
the two globular lobes of calmodulin 
form additional contacts with each other 
by closing in around at least part of the 
peptide. An artist's conception of the 
configuration is shown in Fig. 10. Thus 
our neutron-scattering experiments have 
yielded a surprising view of the interac- 
tion between ca2+-calmodulin and the 
binding domain of one target enzyme. 

That view is not necessarily appli- 
cable to calmodulin's interaction with 
all of its target enzymes. In particu- 
lar, our experiments on phosphorylase 
kinase (PhK) show rather different re- 
sults. PhK, a large enzyme containing 
many subunits, catalyzes the transfer of 
a phosphate group from ATP to glyco- 
gen phosphorylase, thereby activating 
glycogen phosphorylase as a catalyst 
in the conversion of glycogen to glu- 
cose (Fig. 11). PhK is made up of four 
identical copies each of four different 
polypeptides, denoted a, 8, 7, and 6. 
The 7 subunit contains the catalytic site; 
the a, Q, and 6 subunits play regula- 
tory roles in response to various phys- 
iological signals. The protein compos- 
ing the 6 subunit is calmodulin. When 
ca2+ binds to those intrinsic calmod- 
ulin molecules, the catalytic activity 
of the 7 subunit increases twentyfold. 
Calmodulin's activation of PhK is fun- 
damentally different from its activation 
of MLCK in that the calmodulin re- 
mains associated with the 6 subunit in 
the absence of ca2+. 

It has recently been shown that ca2+- 
calmodulin binds to the 7 subunit at 
two noncontiguous sites, each contain- 
ing twenty-five amino-acid residues. 
The binding between Ca2+-calrnodulin 
and the 7 subunit in PhK apparently en- 
compasses a more extensive region than 
does the binding of ca2+-calmodulin to 
MLCK. 

We have recently completed x-ray 
studies of ca2+-calmodulin complexed 
with one or the other or both of two 
synthetic polypeptides corresponding to 

STRUCTURE OF ca2+-CALMODULIN BOUND TO MLCK-1 

Fig. 10. This artist's conception of cab-calmodulin bound to MLCK-I is based on small-angle 
neutron-scattering data. Those data suggest that the a-helical peptide is in contact with calmod- 
ulin's Interconnecting a helix and that the two globular lobes of calmodulin bend around the 
peptide to form additional contacts. 

the two binding domains on the 7 sub- 
unit of PhK. The two synthetic polypep- 
tides are designated PhK5 and PhK13. 
In addition, we have gathered neutron- 
scattering data for deuterated-ca2+- 
calmodulin complexed with both syn- 
thetic polypeptides. The results are 
again a surprise. The binding of PhK5 
alone results in a contraction of Ca2+- 
calmodulin quite similar to that in- 
duced by MLCK-I. The x-ray-scattering 
data for the complex give values of 
17.1 angstroms and 50 angstroms for 

Rg and dmax, respectively. Apparently 
PhK5 and MLCK-I bind similarly to 
calmodulin. The amino-acid sequences 
of PhK5 and MLCK-I are such that 
both peptides are predicted tohave a 
high propensity for forming an amphi- 
pathic helix, a configuration that may 
facilitate interaction with the intercon- 
necting helix of calmodulin. The se- 
quence of PhK13 is such that the pep- 
tide is predicted to have little or no a 
helix but significant Q structure. The 
x-ray data for Ca2+-calmodulin com- 
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REGULATION OF GLYCOGEN 
DEGRADATION BY ca2+ THROUGH 
CALMODULIN INTRINSIC TO PhK 

Fig. 11. Another target enzyme of ca2+- 
calmodulin is phosphorylase kinase (PhK), a 
large (1.3 million daltons) enzyme consisting 
of four identical copies of each of four 
different polypeptide subunits, one of which 
is calmodulin. PhK is involved in the cascade 
of interactions, initiated by a hormone binding 
to a cell, that results in the degradation of 
glycogen to glucose. Metabolism of the 
glucose then provides energy for use by 
the cell in various processes, including 
muscle contraction. The activation of PhK 

by ~a^-calmodulin differs from that of most 
of ~a^-calmodulin's target enzymes in that 
the calmodulin is an intrinsic subunit of PhK. 
Binding of ca2* to those intrinsic calmodulin 
subunits activates the subunits containing the 
sites at which catalysis of the activation of 
glycogen phosphorylase occurs. 

plexed to PhK 13 show no contraction 
at all, but rather an overall extension 
of the structure (Rg w 28 angstroms 
and dmax w 90 angstroms). The com- 
plex with both PhK5 and PhK13 is also 
extended, as indicated by Rg and dmax 
values not significantly different from 
those of ca2+-calmodulin-PhKl 3. 

Neutron-scattering data for deuter- 
ated ca2+-calmodulin complexed with 
both PhK5 and PhK 13 add further in- 
sight into the nature of the complex. 
The scattering-length densities of both 
peptides are approximately equal to that 
of a solvent containing 40 percent D20. 
The pair-distribution function deter- 
mined from scattering data for the com- 
plex dispersed in such a solvent shows 
that calmodulin itself is extended (Rg = 
26 angstroms and dmax w 90 angstroms). 
That result indicates that PhK13 influ- 
ences the way in which Ca2+-calmodulin 
binds to PhK5. In particular, PhK13 
apparently prevents PhK5 from induc- 
ing a conforrnational change in ca2+- 
calmodulin similar to the contraction 

Active 
Phosphorylase 

Kinase 

Inactive 
Glycogen 

Phosphorylase 

Calmodulin 
Subunit 

Catalytic 
Site 

Inactive 
Phosphorylase 

Kinase 

Activated 
Glycogen 

Phosphorylase 

induced by MLCK-I. The differences 
between the conformational changes in- 
duced in ca2+-calmodulin by the two 
target enzymes (phosphorylase kinase 
and myosin light-chain kinase) are likely 
to be due to differences in the nature of 
its interactions with the two enzymes, 
and they provide a clue as to the pur- 
pose of the unusual interconnecting 
helix in calmodulin. That flexible do- 
main clearly facilitates changes in the 
relationship between the globular do- 
mains of calmodulin that allow its bind- 
ing to a diversity of target enzymes and 
its activation of a wide variety of bio- 
chemical processes. Our goal is to use 
neutron-scattering data, in conjunction 
with other structural data, to build up a 
complete picture of the molecular basis 
for ca2+-dependent activation of target 
enzymes by calmodulin. Future stud- 
ies will focus on developing methods 

for preparing complexes of deuterated 
calmodulin with intact target enzymes. 
In addition, the interactions of ca2+- 
calmodulin with other target enzymes 
will be investigated. 

As is apparent from this discussion, 
unraveling the molecular basis of a bi- 
ological function is a long and ardu- 
ous task. Neutron-scattering studies, al- 
though difficult, are providing a view of 
biological molecules in functional states 
that were heretofore unobservable. Their 
role in studies of biological function 
should continue to grow and to yield 
important clues concerning the struc- 
tural dynamics of complex biological 
units. 
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FERROFLUIDS 
a new alignment technique 

ypical neutron-scattering ex- 
periments on particles in solu- 
tion yield only one-dimensional T 

(spherically averaged) data because the 
scattering particles are randomly ori- 
ented. Such data can provide a model 
for the general shape and the bound- 
aries of the scattering particles, but of- 
ten more than one model is consistent 
with the data. However, if the particles 
are partially ordered by being given a 
definite orientation, the resulting scatter- 
ing data contain more detailed structural 
information. 

Alignment in one dimension has been 
achieved for the rod-shaped tobacco mo- 
saic virus by applying shearing forces 
to an aqueous gel of the viruses. Two- 
dimensional x-ray-diffraction data for 

the aligned viruses led to a complete 
three-dimensional structure at a resolu- 
tion of 3.6 angstroms (Fig. 1). Although 
that result is very impressive, the tech- 
nique is not applicable to many biologi- 
cal structures. 

Here we present preliminary studies 
of a new technique for aligning elon- 
gated biological assemblies in solu- 
tion. The technique involves dispers- 
ing the assemblies in a ferrofluid (a 
fluid in which magnetic particles are 
suspended) and applying a moderate 
magnetic field. (Note that because the 
magnetic particles generally contain 
iron, which absorbs x rays strongly, the 
ferrofluid alignment technique is appli- 
cable to neutron-scattering experiments 
but not to x-ray-scattering experiments.) 
Magnetic forces cause the moments, 
or spins, of the magnetic particles to 
align along the direction of the mag- 

STRUCTURE OF TMV 

Fig. 1. The rod-shaped tobacco mosaic 
virus is about 3000 angstroms long and 180 
angstroms in diameter. Its structure at a 
resolution of 3.6 angstroms was deduced 
from x-ray diffraction data for an aqueous 
gel of viruses. The viruses were oriented in 
one direction by shearing forces. The viral 
genetic material (RNA) is enclosed within a 
protein coat consisting of a helical array of 
many copies of a single protein species. The 
distance between the turns of the helix is 23 
angstroms. 

netic field, and their alignment, in turn, 
causes alignment of the elongated bi- 
ological assemblies. Some biological 
assemblies have intrinsic diamagnetic 
moments and will therefore align along 
a magnetic field in the absence of mag- 

netic particles. However, very strong 
magnetic fields are usually required. 
In contrast, the ferrofluid technique re- 
quires no intrinsic magnetic properties 
of the biological assemblies and only 
moderate magnetic fields. 

We have tested the ferrofluid tech- 
nique on two viruses, the tobacco mo- 
saic virus (TMV) and the tobacco rattle 
virus (TRV), and have obtained neutron- 
diffraction data that testify to its suc- 
cess. Our tests focused not only on ob- 
taining a high degree of alignment but 
also on understanding how the align- 
ment comes about. Figure 2 shows two 
possible mechanisms. One possibility 
is that the biological assemblies act like 
"magnetic holes." That is, by displac- 
ing the ferrofluid, they acquire effec- 
tive magnetic moments equal in mag- 
nitude and opposite in sign to the sum 
of the moments of the magnetic par- 
ticles in the displaced ferrofluid. The 
effective moments then align along the 
applied magnetic field. In our experi- 
ments, however, the effective moments 
would be large enough to cause align- 
ment of the assemblies in moderate 

magnetic fields only if the assemblies 
existed as ordered domains, or aggre- 
gates. Then each domain becomes a 
magnetic hole oriented along the ap- 
plied field (Fig. 2a). The other possible 
mechanism of alignment invokes linear 
correlations among the magnetic par- 
ticles, that is, a tendency for them to 
line up in rows along the applied field. 
Because disrupting those linear corre- 
lations would require energy, the non- 
magnetic elongated assemblies also tend 
to line up, with their long axes along 
the field, in rows between the rows of 
magnetic particles (Fig. 2b). It seems 
likely at this time that both alignment 
mechanisms operate to different degrees 
depending on the relative concentrations 
of magnetic particles and biological as- 
semblies and whether the solution con- 
ditions favor the formation of ordered 
domains of the biological assemblies. 
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POSSIBLE MECHANISMS OF 
ALIGNMENT IN A FERROFLUID 

Fig. 2. ~ l o n ~ a t e d  biological assemblies dis- 
persed in a ferrofluid align along a moderate 
applied magnetic field even if they lack in- 
trinsic magnetic properties. Shown here are 
two possible mechanisms of alignment. (a) 
Ordered domains of the biological assemblies 
act like magnetic holes. In other words, the 
domains acquire effective magnetic moments 
equal in magnitude and opposite in direc- 
tion to the sum of the magnetic moments 
of the magnetic particles they displace. The 
effective magnetic moments cause the bio- 
logical assemblies to align along the field. 
(b) Long-range magnetic correlations among 
the magnetic particles cause them to align 
in rows along the applied field. Lacking the 
energy to disrupt the linear correlations, the 
elongated biological assemblies also align 
along the field. 

(a) Magnetic Holes 

(b) Linear Correlations 

Magnetic Field Line Rod-Shaped Biological Assembly 

@ Magnetic Particle - Effective Magnetic Moment 

The magnetic particles in the fer- 
rofluid would normally contribute to the 
observed scattering intensity. However, 
that contribution can be eliminated by 
matching the scattering-length density of 
the magnetic particles to that of the sol- 
vent. By a happy coincidence of nature, 
the neutron scattering-length density of 
the ferromagnetic material magnetite is 
quite close to that of D20. As is well 
known, particles of magnetite align with 
an applied magnetic field. To achieve a 

reasonably homogeneous suspension of 
magnetite particles in D20, the particles 
must be coated with a detergent surfac- 
tant. The detergent must be carefully 
chosen, however, to avoid its degrad- 
ing the biological assemblies. Through 
extensive electron microscopy we iden- 
tified a detergent that did not degrade 
TMV or TRV. We then deuterated the 
detergent to match the scattering-length 
densities of magnetite and D20. 

To find out how well our ferrofluid 
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worked, we obtained neutron-scattering 
data for 0.06-volume-fraction disper- 
sions of each virus in the ferrofluid. 
In the absence of a magnetic field, the 
scattering from TMV was isotropic, 
as expected (Fig. 3a). We also saw a 
diffraction peak corresponding to a dis- 
tance of 363 angstroms. That diffraction 
peak arises because the viruses formed 
ordered domains in which the packing 
distance was 363 angstroms (Fig. 4a). 
(The packing distance is determined by 
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Intensity 

a repulsive electrostatic force between 
the viruses and varies with the ionic 
strength of the solution.) In a modest 
magnetic field of 0.3 tesla, the scatter- 
ing was anisotropic, and the diffraction 
peak at 363 angstroms appeared only in 
the direction perpendicular to the field 
(Fig. 3b). Those results suggest that the 
TMV domains were aligned in such a 
way that the long axes of the viruses 
were parallel to the applied field. 

If the TMV domains do so align, 

SMALL-ANGLE 
NEUTRON-SCATTERING DATA 
FOR TMV IN A FERROFLUID 

Fig. 3. Color-coded intensity data for neu- 
trons scattered from tobacco mosaic virus 
dispersed in a ferrofluid. The intensity cor- 
responding to the color of a detector pixel is 
related to the number of neutrons detected 
in the pixel. (a) In the absence of a magnetic 
field, the scattering is isotropic and a diffrac- 
tion peak (a circle of high intensity) appears 
at a scattering angle corresponding to a 
distance of 363 angstroms. The diffraction 
peak reflects the packing distance between 

individual viruses in ordered domains. (b) 
When a magnetic field of 0.3 tesla is applied 
along the x direction, the diffraction peak 
appears only in the y direction, that is, per- 
pendicular to the applied field. That result 
means that the packing distances are aligned 
perpendicular to the field and the long axes 
of the viruses are aligned along the field. The 
degree of alignment cannot be explained by 
intrinsic diamagnetism of the viruses and 
must therefore be caused by the ferrofluid. 
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ORDERED AGGREGATES 
OF TMV IN A FERROFLUID 

Fig. 4. Tobacco mosaic viruses tend to form 

ordered domains in solution, as shown In 

the electron micrograph below. The viruses 

within a domain are kept at a certain distance 

by electrostatic forces. That distance depends 

on the pH and ionic strength of the solution 

and in our experiments was 363 angstroms. 

(a) In the absense of a magnetic field, the 

domains are randomly oriented in a ferrofluid. 

(b) An applied magnetic field aligns the 

magnetic particles in the ferrofluid, which, 

In turn, causes the domains to align along 

the field. Thus the 363-angstrom spacing 

between the viruses is perpendicular to the 

field and produces diffraction peaks only in 

(b) Magnetic Field Present 

another diffraction peak should be seen, 
one produced by the 23-angstrom dis- 
tance between the turns of the helical 
viral coat protein (see Fig. 1). That 
peak should occur at scattering angles 
much greater than those included in the 
data of Fig. 3 and at a direction per- 
pendicular to the direction at which the 
diffraction peak due to the packing dis- 
tance is observed. We moved the detec- 
tor closer to the sample and did indeed 
see a diffraction peak corresponding to a 

23-angstrom helical pitch (Fig. 5a). The 
existence of the peak confirms the struc- 
tural integrity of the viruses in the fer- 
rofluid, and its orientation parallel to the 
magnetic field is consistent with align- 
ment of the long axes of the viruses 
parallel to the magnetic field (Fig. 4b). 

Although our experiments demon- 
strated alignment, we wondered ,whether 
it was caused by intrinsic magnetic 
properties of TMV or by one of the 
mechanisms depicted in Fig. 2. The 
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viruses could have been ordered by dia- 
magnetic moments; however, the mag- 
netic field strength was smaller than 
is generally needed to achieve the de- 
gree of alignment indicated by the data. 
Such alignment often requires the pres- 
ence of ordered domains in the sample. 
So we repeated the experiments, this 
time adding phosphate buffer, the ions 
of which are known to disrupt domain 
structure. Thus alignment based on the 
intrinsic diamagnetism of the viruses is 
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not expected in the presence of phos- 
phate buffer. We found that the viruses 
were still aligned but to a lesser degree. 
That result suggests not only that the 
ordering is due to the presence of the 
ferrofluid but also that the mechanism 
depicted in Fig. 2b may enhance the 
alignment of TMV. 

The tobacco rattle virus is genetically 
unrelated but morphologically quite sim- 
ilar to TMV. TRV shows only poor 
orientation under shear, and concen- 

NEUTRON DIFFRACTION 
PEAKS FROM TMV AND TRV 

Fig. 5. Color-coded Intensity data for (a) 
tobacco mosaic virus and (b) tobacco rattle 
virus dispersed in a ferrofluid in the presence 
of a 0.3-tesla applied magnetic field. Note 
the diffraction peaks at 23 and 25 angstroms, 
which correspond to the regular spacing 
between the turns of the helical protein coats 
of TMV and TRV, respectively. The diffraction 
peaks appear only in the x direction, that is, 
along the direction of the applied field. Thus, 
the ferrofluid has aligned the viruses with 
their long axes along the applied magnetic 
field. 

trated samples of TRV did not align in 
a normal solution even in a high ap- 
plied magnetic field (7 teslas). How- 
ever, when TRV was dispersed in the 
ferrofluid, a field of 0.5 tesla was suffi- 
cient to produce alignment comparable 
to that obtained for TMV in phosphate 
buffer. Figure 5b shows a diffraction 
peak corresponding to the 25-angstrom 
pitch of the helical TRV protein coat, 
similar to the peak obtained for TMV in 
Fig. 5a. The position of the peak indi- 
cates that the viruses are aligned parallel 
to the applied magnetic field. Moreover, 
like TMV in phosphate buffer, TRV 
showed no evidence of any domains. 

Our preliminary studies demonstrated 
that the ferrofluid technique can orient 
elongated biological assemblies irrespec- 
tive of their intrinsic magnetic properties 
and without disrupting their structural 
integrity. Furthermore, the orientation 
is sufficiently great to facilitate mea- 
surement of internal structural param- 
eters. Future studies will concentrate 
on increasing the degree of alignment 
so that higher-resolution data can be ob- 
tained. i 



Biology on the Scale . . 

Acknowledgments 

I am pleased to express my gratitude to the 
people whose collaboration made possible the 
experiments described in this article. In partic- 
ular, the calcium-regulation experiment required 
the expertise and resources of Sue Rokop and 
Anthony Means in molecular biology and bio- 
chemistry, of Philip A. Seeger, Douglas Heidorn, 
and Stephen Henderson in neutron and x-ray 
scattering, of David Hobart and Phillip Palmer 
in plutonium chemistry, of Donald Blumenthal 
in target-enzyme activation and peptide synthe- 
sis, and of Henri Crespi in preparing deuterated 
materials. The experiments on ferrofluids were 
a collaborative effort with Stuart Charles, Gerald 
Stubbs, Tobin Sosnick, Peter Timmins, Roger 
Pynn, and John Hayter. 

Further Reading 

Benno P. Schoenbom, editor. 1976. Neutron 
Scattering for the Analysis of Biological Struc- 
tures: Report of Symposium Held June 2-6, 
7975. Brookhaven National Laboratory report 
50543. 

B. Jacrot. 1976. The study of biological struc- 
tures by neutron scattering from solution. Re- 
ports on Progress in Physics 39: 91 1-953. 

0. Clatter and 0. Kratky, editors. 1982. Small 
Angle X-ray Scattering. London: Academic 
Press. 

Jill Trewhella, J.-L. Popot, D. M. Engelman, and 
G. Zaccai. 1986. Neutron diffraction studies of 
bacteriorhodopsin. Physics 136B: 249. 

Jill Trewhella, Jean-Luc Popot, Giuseppe Zacca'i, 
and Donald M. Engelman. 1986. Localization of 
two chymotryptic fragments in the structure of 
renatured bacteriorhodopsin by neutron diffrac- 
tion. The EMBO Journal 5 :  3045. 

Philip Cohen and Claude B. Klee, editors. 1988. 
"Calmodulin." In Molecular Aspects of Cellular 
Regulation, edited by Philip Cohen. Amsterdam: 
Elsevier. 

Douglas B. Heidom and Jill Trewhella. 1988. 
Comparison of the crystal and solution struc- 
tures of calmodulin and troponin C. Biochemistry 
27: 909. 
D. B. Heidorn, P. A. Seeger, S. E. Rokop, 
D. K. Blumenthal, A. R. Means, H. Crespi, and 
J. Trewhella. 1989. Changes in the structure of 
calmodulin induced by a peptide based on the 
calmodulin-binding domain of myosin light chain 
kinase. Biochemistry 28: 6757. 

R. A. Kowluru, D. B. Heidorn, S. P. Edmond- 
son, M. W. Bitensky, A. Kowluru, N. W. Downer, 
T. W. Whaley, and J. Trewella. 1989. Glycation 
of calmodulin: Chemistry and structural and 
functional consequences. Biochemistry 28: 2220. 

D. B. Heidorn and J. Trewhella. Low-resolution 
structural studies of proteins in solution: Calmod- 
ulin. Accepted for publication in Comments on 
Molecular and Cellular Biophysics: A Journal 
o f  Critical Discussion of the Current Literature 
(Comments on Modern Biology A). 

J. Trewhella, D. B. Heidorn, and P. A. Seeger. 
Solution structures of calcium-binding pro- 
teins: A small-angle-scattering study. Jour- 
nal of Molecular Crystals and Liquid Crystals 
180A: 45-53. 

J. Trewhella, D. K. Blumenthal, S. Rokop, and 
P. A. Seeger. The solution structure of calmod- 
ulin complexed with two peptides based on the 
regulatory domain of the catalytic subunit of 
phosphorylase kinasc. Submitted to Biochemistry. 

Keiichi Namba and Gerald Stubbs. 1986. Struc- 
ture of tobacco mosaic virus at 3.6 A resolution: 
Implications for assembly. Science 23 1 : 1401. 

John B. Hayter, Roger Pynn, Stuart Charles, 
Arne T. Skjeltorp, Jill Trewhella, Gerald Stubbs, 
and Peter Timmins. 1989. Ordered macromolec- 
ular structures in ferrofluid mixtures. Physical 
Review Letters 62: 1667. 

Los Alamos Science Summer 1990 



Biology on the Scale . . . 

Jill Trewhella is an Australian-born biophysicist. 
She received her B.Sc. and M.Sc. degrees in 
physics at the University of New South Wales. 
Her studies there in molecular structure included 
an x-ray-crystallographic analysis of an anti- 
cancer agent that interacts with DNA to inhibit 
replication. That work directed her interests to- 
ward structural biology. Her Ph.D. research at 
the University of Sydney utilized physical tech- 
niques, in particular NMR spectroscopy, to study 
the structure and function of heme proteins. She 
came to the United States in the fall of 1980 as 
a postdoctoral fellow at Yale University, where 

she used neutron diffraction to study the struc- 
ture of the membrane protein bacteriorhodopsin. 
She came to the Laboratory's Life Sciences Divi- 
sion in 1984 to develop a structural biology pro- 
gram in association with the then newly develop- 
ing neutron-scattering center. Since that time her 
research program in several areas of structural 
biology has utilized neutron and x-ray scatter- 
ing, as well as other biophysical techniques. 
One of her major interests is in the molecular 
mechanisms of calcium regulation. She is also 
actively involved in structural studies of chro- 
matin and molecules of the immune system. 

LOA Alcimo', Science Summer 1990 



Biology on the Scale . . . 

FERROFLUIDS 
a new alignment technique 

ypical neutron-scattering ex- 
periments on particles in solu- 
tion yield only one-dimensional T 

(spherically averaged) data because the 
scattering particles are randomly ori- 
ented. Such data can provide a model 
for the general shape and the bound- 
aries of the scattering particles, but of- 
ten more than one model is consistent 
with the data. However, if the particles 
are partially ordered by being given a 
definite orientation, the resulting scatter- 
ing data contain more detailed structural 
information. 

Alignment in one dimension has been 
achieved for the rod-shaped tobacco mo- 
saic virus by applying shearing forces 
to an aqueous gel of the viruses. Two- 
dimensional x-ray-diffraction data for 

the aligned viruses led to a complete 
three-dimensional structure at a resolu- 
tion of 3.6 angstroms (Fig. 1). Although 
that result is very impressive, the tech- 
nique is not applicable to many biologi- 
cal structures. 

Here we present preliminary studies 
of a new technique for aligning elon- 
gated biological assemblies in solu- 
tion. The technique involves dispers- 
ing the assemblies in a ferrofluid (a 
fluid in which magnetic particles are 
suspended) and applying a moderate 
magnetic field. (Note that because the 
magnetic particles generally contain 
iron, which absorbs x rays strongly, the 
ferrofluid alignment technique is appli- 
cable to neutron-scattering experiments 
but not to x-ray-scattering experiments.) 
Magnetic forces cause the moments, 
or spins, of the magnetic particles to 
align along the direction of the mag- 

STRUCTURE OF TMV 

Fig. 1. The rod-shaped tobacco mosaic 
virus is about 3000 angstroms long and 180 
angstroms in diameter. Its structure at a 
resolution of 3.6 angstroms was deduced 
from x-ray diffraction data for an aqueous 
gel of viruses. The viruses were oriented in 
one direction by shearing forces. The viral 
genetic material (RNA) is enclosed within a 
protein coat consisting of a helical array of 
many copies of a single protein species. The 
distance between the turns of the helix is 23 
angstroms. 

netic field, and their alignment, in turn, 
causes alignment of the elongated bi- 
ological assemblies. Some biological 
assemblies have intrinsic diamagnetic 
moments and will therefore align along 
a magnetic field in the absence of mag- 

netic particles. However, very strong 
magnetic fields are usually required. 
In contrast, the ferrofluid technique re- 
quires no intrinsic magnetic properties 
of the biological assemblies and only 
moderate magnetic fields. 

We have tested the ferrofluid tech- 
nique on two viruses, the tobacco mo- 
saic virus (TMV) and the tobacco rattle 
virus (TRV), and have obtained neutron- 
diffraction data that testify to its suc- 
cess. Our tests focused not only on ob- 
taining a high degree of alignment but 
also on understanding how the align- 
ment comes about. Figure 2 shows two 
possible mechanisms. One possibility 
is that the biological assemblies act like 
"magnetic holes." That is, by displac- 
ing the ferrofluid, they acquire effec- 
tive magnetic moments equal in mag- 
nitude and opposite in sign to the sum 
of the moments of the magnetic par- 
ticles in the displaced ferrofluid. The 
effective moments then align along the 
applied magnetic field. In our experi- 
ments, however, the effective moments 
would be large enough to cause align- 
ment of the assemblies in moderate 

magnetic fields only if the assemblies 
existed as ordered domains, or aggre- 
gates. Then each domain becomes a 
magnetic hole oriented along the ap- 
plied field (Fig. 2a). The other possible 
mechanism of alignment invokes linear 
correlations among the magnetic par- 
ticles, that is, a tendency for them to 
line up in rows along the applied field. 
Because disrupting those linear corre- 
lations would require energy, the non- 
magnetic elongated assemblies also tend 
to line up, with their long axes along 
the field, in rows between the rows of 
magnetic particles (Fig. 2b). It seems 
likely at this time that both alignment 
mechanisms operate to different degrees 
depending on the relative concentrations 
of magnetic particles and biological as- 
semblies and whether the solution con- 
ditions favor the formation of ordered 
domains of the biological assemblies. 
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POSSIBLE MECHANISMS OF 
ALIGNMENT IN A FERROFLUID 

Fig. 2. ~ l o n ~ a t e d  biological assemblies dis- 
persed in a ferrofluid align along a moderate 
applied magnetic field even if they lack in- 
trinsic magnetic properties. Shown here are 
two possible mechanisms of alignment. (a) 
Ordered domains of the biological assemblies 
act like magnetic holes. In other words, the 
domains acquire effective magnetic moments 
equal in magnitude and opposite in direc- 
tion to the sum of the magnetic moments 
of the magnetic particles they displace. The 
effective magnetic moments cause the bio- 
logical assemblies to align along the field. 
(b) Long-range magnetic correlations among 
the magnetic particles cause them to align 
in rows along the applied field. Lacking the 
energy to disrupt the linear correlations, the 
elongated biological assemblies also align 
along the field. 

(a) Magnetic Holes 

(b) Linear Correlations 

Magnetic Field Line Rod-Shaped Biological Assembly 

@ Magnetic Particle - Effective Magnetic Moment 

The magnetic particles in the fer- 
rofluid would normally contribute to the 
observed scattering intensity. However, 
that contribution can be eliminated by 
matching the scattering-length density of 
the magnetic particles to that of the sol- 
vent. By a happy coincidence of nature, 
the neutron scattering-length density of 
the ferromagnetic material magnetite is 
quite close to that of D20. As is well 
known, particles of magnetite align with 
an applied magnetic field. To achieve a 

reasonably homogeneous suspension of 
magnetite particles in D20, the particles 
must be coated with a detergent surfac- 
tant. The detergent must be carefully 
chosen, however, to avoid its degrad- 
ing the biological assemblies. Through 
extensive electron microscopy we iden- 
tified a detergent that did not degrade 
TMV or TRV. We then deuterated the 
detergent to match the scattering-length 
densities of magnetite and D20. 

To find out how well our ferrofluid 
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worked, we obtained neutron-scattering 
data for 0.06-volume-fraction disper- 
sions of each virus in the ferrofluid. 
In the absence of a magnetic field, the 
scattering from TMV was isotropic, 
as expected (Fig. 3a). We also saw a 
diffraction peak corresponding to a dis- 
tance of 363 angstroms. That diffraction 
peak arises because the viruses formed 
ordered domains in which the packing 
distance was 363 angstroms (Fig. 4a). 
(The packing distance is determined by 

Los Alamos Science Summer 1990 

Intensity 

a repulsive electrostatic force between 
the viruses and varies with the ionic 
strength of the solution.) In a modest 
magnetic field of 0.3 tesla, the scatter- 
ing was anisotropic, and the diffraction 
peak at 363 angstroms appeared only in 
the direction perpendicular to the field 
(Fig. 3b). Those results suggest that the 
TMV domains were aligned in such a 
way that the long axes of the viruses 
were parallel to the applied field. 

If the TMV domains do so align, 

SMALL-ANGLE 
NEUTRON-SCATTERING DATA 
FOR TMV IN A FERROFLUID 

Fig. 3. Color-coded intensity data for neu- 
trons scattered from tobacco mosaic virus 
dispersed in a ferrofluid. The intensity cor- 
responding to the color of a detector pixel is 
related to the number of neutrons detected 
in the pixel. (a) In the absence of a magnetic 
field, the scattering is isotropic and a diffrac- 
tion peak (a circle of high intensity) appears 
at a scattering angle corresponding to a 
distance of 363 angstroms. The diffraction 
peak reflects the packing distance between 

individual viruses in ordered domains. (b) 
When a magnetic field of 0.3 tesla is applied 
along the x direction, the diffraction peak 
appears only in the y direction, that is, per- 
pendicular to the applied field. That result 
means that the packing distances are aligned 
perpendicular to the field and the long axes 
of the viruses are aligned along the field. The 
degree of alignment cannot be explained by 
intrinsic diamagnetism of the viruses and 
must therefore be caused by the ferrofluid. 
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ORDERED AGGREGATES 
OF TMV IN A FERROFLUID 

Fig. 4. Tobacco mosaic viruses tend to form 

ordered domains in solution, as shown In 

the electron micrograph below. The viruses 

within a domain are kept at a certain distance 

by electrostatic forces. That distance depends 

on the pH and ionic strength of the solution 

and in our experiments was 363 angstroms. 

(a) In the absense of a magnetic field, the 

domains are randomly oriented in a ferrofluid. 

(b) An applied magnetic field aligns the 

magnetic particles in the ferrofluid, which, 

In turn, causes the domains to align along 

the field. Thus the 363-angstrom spacing 

between the viruses is perpendicular to the 

field and produces diffraction peaks only in 

(b) Magnetic Field Present 

another diffraction peak should be seen, 
one produced by the 23-angstrom dis- 
tance between the turns of the helical 
viral coat protein (see Fig. 1). That 
peak should occur at scattering angles 
much greater than those included in the 
data of Fig. 3 and at a direction per- 
pendicular to the direction at which the 
diffraction peak due to the packing dis- 
tance is observed. We moved the detec- 
tor closer to the sample and did indeed 
see a diffraction peak corresponding to a 

23-angstrom helical pitch (Fig. 5a). The 
existence of the peak confirms the struc- 
tural integrity of the viruses in the fer- 
rofluid, and its orientation parallel to the 
magnetic field is consistent with align- 
ment of the long axes of the viruses 
parallel to the magnetic field (Fig. 4b). 

Although our experiments demon- 
strated alignment, we wondered ,whether 
it was caused by intrinsic magnetic 
properties of TMV or by one of the 
mechanisms depicted in Fig. 2. The 
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viruses could have been ordered by dia- 
magnetic moments; however, the mag- 
netic field strength was smaller than 
is generally needed to achieve the de- 
gree of alignment indicated by the data. 
Such alignment often requires the pres- 
ence of ordered domains in the sample. 
So we repeated the experiments, this 
time adding phosphate buffer, the ions 
of which are known to disrupt domain 
structure. Thus alignment based on the 
intrinsic diamagnetism of the viruses is 
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not expected in the presence of phos- 
phate buffer. We found that the viruses 
were still aligned but to a lesser degree. 
That result suggests not only that the 
ordering is due to the presence of the 
ferrofluid but also that the mechanism 
depicted in Fig. 2b may enhance the 
alignment of TMV. 

The tobacco rattle virus is genetically 
unrelated but morphologically quite sim- 
ilar to TMV. TRV shows only poor 
orientation under shear, and concen- 

NEUTRON DIFFRACTION 
PEAKS FROM TMV AND TRV 

Fig. 5. Color-coded Intensity data for (a) 
tobacco mosaic virus and (b) tobacco rattle 
virus dispersed in a ferrofluid in the presence 
of a 0.3-tesla applied magnetic field. Note 
the diffraction peaks at 23 and 25 angstroms, 
which correspond to the regular spacing 
between the turns of the helical protein coats 
of TMV and TRV, respectively. The diffraction 
peaks appear only in the x direction, that is, 
along the direction of the applied field. Thus, 
the ferrofluid has aligned the viruses with 
their long axes along the applied magnetic 
field. 

trated samples of TRV did not align in 
a normal solution even in a high ap- 
plied magnetic field (7 teslas). How- 
ever, when TRV was dispersed in the 
ferrofluid, a field of 0.5 tesla was suffi- 
cient to produce alignment comparable 
to that obtained for TMV in phosphate 
buffer. Figure 5b shows a diffraction 
peak corresponding to the 25-angstrom 
pitch of the helical TRV protein coat, 
similar to the peak obtained for TMV in 
Fig. 5a. The position of the peak indi- 
cates that the viruses are aligned parallel 
to the applied magnetic field. Moreover, 
like TMV in phosphate buffer, TRV 
showed no evidence of any domains. 

Our preliminary studies demonstrated 
that the ferrofluid technique can orient 
elongated biological assemblies irrespec- 
tive of their intrinsic magnetic properties 
and without disrupting their structural 
integrity. Furthermore, the orientation 
is sufficiently great to facilitate mea- 
surement of internal structural param- 
eters. Future studies will concentrate 
on increasing the degree of alignment 
so that higher-resolution data can be ob- 
tained. i 





NEUTRONS, 
SLUDGE PHYSICS 
and the 
LI B ERTY B ELL by Roger pynn 

friend of mine, a well-respected 
theoretical physicist at a major 
American university, worked for 

many years on polymers and colloids 
at one of the better-known oil compa- 

Ã‘ nies. He told me that he once discussed 
his work with an equally well-respected 

experimentalist whose main preoccupations 
were magnetism and phase transitions. Having 
listened to my theorist friend for a few minutes, 

I the experimentalist rendered his verdict: 

â‚ =  ̂"That's sludge science!" He meant, of course, 
that the polymers and colloids my friend 

studied did not have a convenient 
monocrystalline form-their physical 

t properties were not simplified by a symmetrical atomic 
arrangement. Traditionally, scientists have peferred 

Why would one want to study sludge with neutrons? Our opener shows both high- 
tech and mundane products made of disordered materials washing In on a blue wave 01 4 
sludge. In the background, fumed silica particles (red) represent the fractal aggregates 
elucidated by neutron scattering. The Liberty Bell, a famous example of the effects of 
residual stress, rounds out this gallery of neutron scattering's practical applications. \ 
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to investigate the physical properties of 
ordered systems, or at least of materi- 
als that are free of impurities and dirt. 
Unfortunately, many of the materials on 
which our society depends are "dirty" 
and quite devoid of the translational 
symmetry of a crystal-they are made 
of "sludge." 

Examples of sludge abound: the oil 
we put in our automobile engines with 
all of the detergent additives that ad- 
vertisements insist are so important; the 
various polymers we use to package 
food, weave cloth, make compact disks, 
and produce a variety of parts for dish- 
washers, televisions, and other appli- 
ances; the paints and cosmetics we use 
to color and preserve our houses and 
our skins; detergent; soap; toothpaste; 
even some things that pass for food. In 
today's age of advancing technology, 
we are constantly seeking new materials 
that can better serve our needs, that can 
carry out a new or an old function better 
than existing materials. 

But why would one want to study 
sludge with neutrons? To design new 
materials we have to understand the re- 
lationships between material properties, 
material structure, material synthesis, 
and material performance (Fig. 1). As 
an example, we may decide that the 
steel armor of yore is impractical for the 
modem policeman. Instead, we need a 
flack-jacket that is strong enough to stop 
bullets, flexible enough to let the police- 
man move his arms, and light enough 
for him to go to battle without a horse. 
Our dream material needs to combine 
all these properties. Polymers-a com- 
mon type of sludge-are light and flex- 
ible, but those we encounter daily as 
zip-lock bags or the outer casings of 
televisions are not strong enough. To 
design a polymer with the strength to 
stop bullets requires an understanding 
of the relationship between molecular 
structure and strength. Once we know 
the structure that provides the strength 
we want, we have to invent a way of 

synthesizing a polymer with that struc- 
ture. Neutrons enter the picture because 
they often provide an ideal method of 
determining the structures of materials. 
We may not think of sludge as having 
structure, and none may be visible to 
the naked eye, but the molecules are al- 
ways organized in some way, and that 
organization often determines properties. 

Structure, properties, synthesis: all in- 
vestigations build to the performance 
apex of the materials research pyra- 
mid. Once we make a product from our 
dream material, we must find a way to 
ensure that it will perform adequately. 
For a unique, expensive product we 
must make this guarantee without sim- 
ulating future use-which brings us to 
the Liberty Bell. Some years after its 
manufacture, the Liberty Bell cracked, 
probably as a result of stresses intro- 
duced when it was cast. Without real- 
izing that their bell's fame would hang 
from its failure, the manufacturers might 
have prevented the rupture if they had 
understood the distribution of stresses 
related to the casting process. How- 
ever, to achieve such an understand- 
ing without destroying the Bell or any 
other stressed piece of metal-a rail- 
way line, an oil pipeline, or a turbine 
blade-is difficult. We have to measure 
the strain in the material, that is, the 
amount by which it has been stretched 
or compressed during manufacture or 
use, without disturbing an atom. Unfor- 
tunately, most of the traditional methods 
employed to obtain information about 
residual strains involve destruction or 
modification of the component-hole 
drilling in conjunction with strain-gauge 
measurements and progressive removal 
of layers of material, for example. To- 
day, neutron diffraction provides an 
alternative, nondestructive method of 
measuring changes in the interatomic 
spacings, and thus of measuring the 
residual strains, at different positions 
in the sample. 

In  this article I will describe a few 

of neutron scattering's contributions to 
our understanding of the structures of 
several different types of sludge and to 
studies of the stresses in metals. Ex- 
periments of this sort are relatively 
new to neutron scattering. The pro- 
found contributions that neutrons have 
made to polymer science-such as de- 
termining the conformations of polymer 
molecules-started at the beginning of 
the seventies, and neutron measurements 
of residual strains in engineered com- 
ponents began only in the eighties. To 
a small extent this evolution has de- 
pended on the development of instru- 
mentation for neutron scattering. To a 
far larger extent it results from a ma- 
turing of the field. In the early days, 
neutron-scattering researchers measured 
single crystals and tried to understand 
the properties described in graduate 
texts on physics: atomic and magnetic 
structures of inorganic solids, phonons 
and magnons in crystals, and the struc- 
tures of simple liquids, for example. 
Later, they used neutrons to study the 
structural aspects of much more eso- 
teric phenomena-structural phase tran- 
sitions, manifestations of nonlinearity 
such as solitons, and the coexistence of 
magnetism and superconductivity. Each 
new phenomenon left its signature on 
neutron-scattering experiments by giving 
rise to a qualitatively different neutron 
scattering law. Each was a stepping 
stone to the study of a more complex 
system. Now the technique is mature 
enough to apply to sludge, to materials 
we really care about. 

Of course, as a practicing scientist I 
strongly believe basic research should 
be pursued, even when its relevance to 
society is not instantly apparent. From 
lignite to lasers, most of the discoveries 
that have profoundly affected our lives 
have resulted from simple human in- 
quisitiveness, not from a desire to make 
a better widget. It is important that neu- 
tron scattering continue to be used for 
basic research-witness the other ar- 
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(a) Essential Areas of Study 

Performance 

) Properties 

Synthesis, 
Processing 

structure, 
Composition 

(b) An Area of Progress 

Carbon Fibers j 

Composites 1 I 

Year 

MATERIALS RESEARCH 

Fig. 1. (a) This tetrahedron represents the four essential areas of materials research. Its symmetry implies that investigations of any apex must 

necessarily build on the other three. For example, the sharp improvement in the strength-to-density ratio of construction materials-shown on 

a relative scale in (b)-would not have been possible without concurrent advances in methods for synthesizing new materials, elucidating their 

structures, clarifying their properties, and testing their performance. Of course, the complicated demands of high-technology applications require 

attention to more than just strength and weight. As a simple example, lightweight composite materials that get stronger when heated are being 

developed for the wings and engine of hypersonic jets. (The graph is reprinted from Materials Science and Engineering in  the 1990s, a1989 by the 

National Academy of Sciences, National Academy Press, Washington, D.C.) 

ticles in this issue. However, when a 
technique can make significant contribu- 
tions to the solution of more immediate 
and practical problems, those problems 
should not be ignored. They are cer- 
tainly no less challenging intellectually, 
and their solutions have immediate, ob- 
vious impact. Such studies contribute 
to incremental improvements in our 
technologies, while basic research of- 
ten drives the revolutionary changes that 
become clear in hindsight. 

Colloids and 
Amphiphilic Molecules 

The first type of sludge I will dis- 
cuss is colloidal sludge. A colloid is an 
assembly of small particles dispersed 
in a continuous medium of gas, liq- 
uid, or solid. Fog, smoke, milk, paint, 
and foam are colloidal systems encoun- 

tered routinely. Because the particles 
are small-between 10 and 10,000 ang- 
stroms (1 angstrom = 1 0 ' ~  meter)- 
they do not settle even when dispersed 
in gases or liquids. Rather they are 
kept in suspension by the kicks they 
receive from molecules of the carrier 
fluid. Many macromolecules such as 
polymers or proteins dissolve easily in 
a solvent, and in this case the colloidal 
particles are the molecules themselves. 
More fascinating and technically rele- 
vant are the so-called association col- 
loids, one class of which consists of ag- 
gregates of relatively small arnphiphilic 
molecules. Amphiphilic molecules have 
a polar, and hence water-soluble, head 
at one end and a water-insoluble tail 
at the other; the head is hydrophilic- 
water-loving-whereas the tail is hydro- 
phobic-water-hating. In water such 
molecules aggregate so that their tails 

are dry, assembling spontaneously into 
particles called micelles (Fig. 2). In ad- 
dition, amphiphilic molecules solubilize 
materials that are normally completely 
insoluble in water-metals, ceramics, 
or oils, for example. The amphiphilic 
molecules are adsorbed onto the sur- 
faces of "dirt" particles, and these sur- 
face layers prevent the dirt from separat- 
ing out. Like the rnicelle, this configu- 
ration prevents contact between the tails 
of the amphiphilic molecules and the 
water environment. When small groups 
of amphiphilic molecules solubilize a 
liquid, such as oil, the resulting colloid 
is called a microemul'iion. 

Anyone who has tried to wash clothes 
or dishes in plain water knows why 
amphiphilic molecules are important: 
without soap or detergent-amphiphilic 
molecules by another name-dust and 
grease will not wash away. In addition 
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(a) Micelle (b) Inverted Micelle 

to everyday dirt, amphiphilic molecules 
are used to solubilize a wide variety of 
other materials. Detergents isolate cor- 
rosive products in motor oil by forming 
microemulsions; light-sensitive emul- 
sions register images in photographic 
processes; bilayers of amphiphilic mol- 
ecules are used to encapsulate drugs 
for more efficient delivery in the body; 
microemulsions are used for tertiary 
oil recovery by the petroleum industry; 
and fats are transported in our blood 
stream by micelles formed from serum 
lipoproteins-the high-density lipids 
we hear about in connection with our 
cholesterol measurements. 

In describing the association col- 
loids that can be made with amphiphilic 
molecules, I have given in Fig. 2 the 
conventional textbook cartoons that pur- 
port to describe the structures of various 
colloidal particles. However, the car- 
toons gloss over many important ques- 
tions. For instance, are the particles re- 
ally spherical? How big are they? Are 

I all particles in a colloidal suspension 
the same size? How much of the par- 

I ticle volume is occupied by the head 
groups? How much by the tails? Is the 
tail region uniformly dense? What is the 
effective surface charge? How do the 
particles organize themselves in concen- 

1 trated suspensions? And how do all of 
these properties depend on temperature 
and the concentration of arnphiphilic 
molecules? Many of these questions can 
be answered by small-angle neutron- 
scattering (SANS) experiments, espe- 
cially when the technique of contrast 
matching is used. 

Small-angle neutron-scattering exper- 
iments are useful for measuring lengths 
between 10 and 10,000 angstroms, the 
size range in which many colloidal 
particles fall. As the name implies, re- 
searchers measure the intensity of neu- 
trons scattered at very small angles, that 
is at very small values of the wave- 
vector transfer, Q. For values of Q 
that are less than about R '  (that is, for 

(c) Oil-in-Water Microemulsion 

Polar 
Head 

Hydrocarbon 
Tail 

Q, 7 <? water 

Arnphiphilic 
Molecule 

(d) "Solubilized" Dirt Particle 

<? water 

TYPES OF ASSOCIATION COLLOIDS 

Fig. 2. When a sufficient number of amphiphilic molecules are dispersed in a solvent, the 
interaction between their hydrophilic heads and hydrophobic tails and the solvent molecules 
can lead to formation of various types of colloidal particles. (a) In water amphiphilic molecules 
can form micelles in which the hydrophobic tails group together so that only the polar heads 
contact the water. (b) In oil the opposite happens; the polar heads group together so that only 
the tails contact the oil. (c) Amphiphilic molecules can form a microemulsion of oil in water 
by surrounding oil droplets with their tails. (d) Detergent molecules can make dirt particles 
soluble in water by surrounding them. Although the effects of the hydrophobic and hydrophilic 
interactions suggest the general configuration of the colloidal particles, techniques such as x-ray 
and neutron small-angle scattering are needed to study details of size, shape, and structure. 

values of QR less than about I), where 
R is the approximate size of a particle, 
the appropriate approximation for the 
scattering from a dilute suspension of 
particles is the Guinier approximation, 
which in logarithmic form is 

1 
In I (Q) = - - R J Q ~  + ln I(0). (1) 3 

I(Q) is the scattering law, that is the 
intensity of scattered neutrons as a func- 
tion of Q, and Rg is the so-called radius 
of gyration of the particle. Rg is anal- 
ogous to the radius of gyration of clas- 
sical mechanics (the square of which 

equals a body's moment of inertia di- 
vided by its mass) and thus is a good 
measure of particle size. According to 
the Guinier approximation, we can de- 
termine Rg by plotting the logarithm of 
the scattered-neutron intensity versus 
- Q .  At small values of Q, the plot 
should be a straight line with a slope 
of -R:. In the case of a solid spherical 
particle whose size is determined only 
by one dimension-its radius-that di- 
mension can be obtained directly from 
Rg; r = {fi~~, or about 1.29Rg. How- 
ever, more dimensions are needed to 
define anisotropic shapessuch as ellip- 
soids, cylinders, or pyramids. In these 
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(a) Sodium Oleate (b) Deuterated Sodium Oleate 

Terminal Nonpolar Tail Polar Terminal Nonpolar Tail Polar 
Methyl Head Methyl Head 
Group Group 

Selective 
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and Contrast 
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Micelle 
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DETAILS OF MICELLAR STRUCTURE 

Fig. 3. The difference between the neutron scattering lengths of hydrogen and deuterium allows 
researchers to see the internal structure of micelles in some detail. (a) The hydrocarbon tall of 
sodium oleat- common soap-has an almost homogeneous scattering-length density along 
its entire span. At best, neutron scattering can show that a micelle consists of an outer shell of 
head groups and a core of tails with a radius of gyration x. (b) By substituting deuterium for 
hydrogen in the terminal methyl groups of the sodium oleate and adjusting the scattering-length 
density of the solvent, researchers can distinguish the ends of the tails from the tails as a whole. 
The 20-percent smaller radius of gyration obtained for the deuterated methyl groups (red) leads 
researchers to postulate a less ordered structure for the micellar core. The terminal methyl 
groups tend toward the center of the micelle but are not heavily concentrated there. 

cases, R, gives a good approximation of 
the average particle dimension. 

In addition to particle size, a Guinier 
plot can be used to determine I (O), the 
extrapolated value of the scattering law 
at Q = 0. This value is proportional to 
the average mass of the colloidal par- 
ticles, that is, to the average number 
of amphiphilic molecules contained in 
a particle. Thus, simple Guinier anal- 
ysis of small-angle neutron-scattering 
data from dilute suspensions provides 
immediate quantitative information on 
the average dimension and mass of the 
colloidal particles. 

At larger values of Q ,  for exam- 
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pie in the Porod region where QR is 
greater than 5, the intensity of scattered 
neutrons yields information about the 
surface structures of colloidal parti- 
cles. In particular, Porod's law says 
the scattered-neutron intensity will be 
proportional to Q-4 if the surfaces 
of the colloidal particles are smooth. 
Moreover, the constant of proportion- 
ality measures the surface area of the 
colloidal particles per unit volume of 
suspension. If the scattering law in the 
Porod region obeys a power law with 
an exponent between -3 and -4, the 
colloidal particles have rough surfaces, 
which need to be described by the frac- 

tal concept described later in this article. 
In addition to the size and surface 

area of the colloidal particles, small- 
angle neutron scattering also allows us 
to determine some details of their in- 
ternal structures. For example, Fig. 2 
indicates that all the hydrocarbon tails 
in the micellar core have the same zig- 
zag conformation and all point toward 
the center of the micelle. Is this really 
the case? Probably not, because such an 
arrangement would allow water to pen- 
etrate the micelles and come in contact 
with the hydrophobic tails. On the other 
hand, one would not expect the micellar 
cores to have a uniform, liquid-like den- 
sity either. After all, the arrangement of 
the tails is constrained by the distribu- 
tion of the polar heads on the particle 
surface. Probably the real situation lies 
between the two limits. The neutron- 
scattering technique known as contrast 
matching can help to resolve this issue. 

Contrast matching is based on a sim- 
ple principle: components of particles 
that have the same density of scattering 
power, or scattering-length density, as 
the solvent in which the particles are 
dispersed do not contribute to the ob- 
served scattered-neutron intensity. (See 
"Neutron Scattering-A Primer" and 
"Biology on the Scale of Neglected 
Dimensions" for a more detailed ac- 
count of contrast matching.) If we could 
somehow match the scattering-length 
densityof the solvent to all regions of 
the hydrophobic tails except the methyl 
groups at their ends (see Fig. 3), then 
the observed scattering would be due 
to the methyl groups alone and- would 
provide information about their spatial 
distribution. Achieving that situation 
is possible because of a fortunate quirk 
of nature-the relatively large differ- 
ence between the scattering lengths of 
hydrogen and deuterium. Researchers 
substitute deuterium for hydrogen in the 
terminal methyl groups and disperse the 
micelles in a mixture of D 2 0  and H 2 0  
whose scattering-length density closely 
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matches that of the tails. By this pro- 
cess, researchers can "see" the spatial 
distribution of the deuterated methyl 
groups alone. Typically, the radius of 
gyration found for the deuterated methyl 
groups in a micelle is less than that of 
the whole micellar core, indicating that 
the ends of the molecular tails are more 
likely to be found toward the center 
of the micelle than evenly distributed 
throughout the core. On the other hand 
the difference between the two values of 
Rg is typically less than 20 percent. So 
the ends of the chains are certainly not 
tethered to the center of the micelle as 
Fig. 2 indicates. 

So far, I have talked only about ex- 
periments on generic colloidal systems. 
To develop colloidal systems for spe- 
cific applications, we must improve our 
understanding of the relation between 
a sample's structure and its properties. 
As a simple example: it is easy to un- 
derstand why soap works in terms of 
Fig. 2Ã‘dus or oil are imprisoned by 
amphiphilic molecules and washed away 
in a milky dispersion. But suppose, by 
chance, that even slight dilution of the 
system caused the soap molecules to 
release their captives. This structural 
change would mean that the very ac- 
tion of rinsing off the soap would re- 
deposit all of the dirt! To understand 
this phenomenon-or develop a bet- 
ter soap-we would need to examine 
the stability of molecular arrangements 
as a function of molecular concentra- 
tion. Neutron scattering can tell us the 
arrangements amphiphilic molecules 
assume, but the free energy of these ar- 
rangements determines their stability. 

The free energy of a molecular ar- 
rangement is calculated by using the 
equation 

That is, the free energy, F ,  equals the 
sum of the particle-interaction energies, 
H ,  minus the temperature, T, times the 

entropy, S. The arrangement with the 
lowest free energy is the moststable. 
Entropy is a measure of disorder and 
is largest for a random distribution of 
amphiphilic molecules in solution and 
smaller for an ordered arrangement such 
as a micelle. Because T and S are al- 
ways positive, free energy decreases 
as entropy and temperature increase. 
Thus, entropy considerations tend to fa- 
vor random distributions of amphiphilic 
molecules over ordered systems such 
as micelles, especially at high tempera- 
tures. Also opposing micelle formation 
are the electrostatic forces that come 
into play when the polar heads of the 
amphiphilic molecules are constrained 
to lie on the surface of a micelle; the 
heads experience repulsive forces which 
increase the interaction energy (and thus 
the free energy). 

On the other hand, what amounts to 
an attraction between the hydropho- 
bic tails of the molecules counters the 
"bumping heads" effect and the effects 
of entropy and thus favors the formation 
of micelles. The attraction is thought 
to be an indirect effect of the interac- 
tion between the tails of the amphiphilic 
molecules and the molecules of the sol- 
vent. When amphiphilic molecules are 
randomly distributed in water, their hy- 
drocarbon tails disrupt many of the wa- 
ter's hydrogen bonds, thereby increasing 
the solvent's free energy. The water 
molecules like to restore these bonds 
and reduce their free energy; so they 
tend to push the tails out of the way, 
causing them to group together and 
form micelles. For many amphiphilic 
molecules, the effective attraction be- 
tween the hydrophobic tails is about 
equal to the repulsion between their po- 
lar heads if the concentration of am- 
phiphilic molecules is high enough. The 
free energy is then lowest when the 
molecules self-assemble into micelles. 
However, at high enough temperatures 
entropy always wins and the molecules 
are randomly distributed in the solvent. 

Vesicles: A Novel Drug Delivery 
System. Aggregations of amphiphilic 
molecules can assume more complicated 
shapes, and the hydrophobic interaction 
can have a wider variety of effects than 
simple micelles. For example, com- 
mercial applications of the hydrophobic 
effect include nonwetting, nonstick pans 
and waterproof fabrics, and the semi- 
permeable membranes of biological cells 
in our bodies are formed from bilay- 
ers of amphiphilic lipid molecules. In 
addition, one of the most technologi- 
cally exciting actions of amphiphilic 
molecules is the formation of hollow, 
spherical shells called vesicles (see 
Fig. 4). Vesicles are composed of bi- 
layers of amphiphilic molecules that 
are very similar in form to the mem- 
branes of biological cells and sometimes 
contain the same lipids. Such vesicles- 
called liposomes-occur naturally in the 
body and serve a variety of purposes, 
including the transport of fats during 
digestion. 

The idea of using liposomes for drug 
delivery was born in the late 1960s as 
a possible solution to one of medicine's 
fundamental compromises. Because all 
drugs are poisonous at some level, the 
least possible amount should be admin- 
istered. On the other hand, drugs are 
diluted in the blood stream, and large 
amounts are degraded, excreted, or ad- 
sorbed onto healthy cells; so the doses 
must be large enough to overcome this 
wastage. In some cases a compromise 
between these contradictory require- 
ments is almost impossible-if a drug 
is administered in sufficient quantity 
to effect a cure, a side effect of the 
drug may kill the patient. However, 
drugs encapsulated in vesicles have 
been found to circulate in the blood 
for considerable periods without be- 
ing degraded or adsorbed. Such lipo- 
soma1 drugs have provided effective 
therapy for several prevalent diseases- 
invariably with far smaller doses than 
usual. Most vesicles containing a drug 
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are recognized as foreign and eventually 
ingested by cells of the immune sys- 
tem that circulate in the blood stream. 
For this reason drugs encapsulated in 
vesicles~one may think of them as 
medical Trojan Horses-have proven 
effective in treating infections of the im- 
mune system itself. The vesicles may 
also be incorporated into body tissue 
in other ways; for example, the lipid 
bilayer composing the vesicle may be- 
come fused with a cell membrane. Such 
fusion allows liposomal drugs to be ad- 
sorbed by cells that are not part of the 
immune system and to provide effective 
therapies for diseases such as fungal in- 
fections. Finally, weakened pathogens 
concentrated on the surfaces of vesicles 
can induce the immune system to pro- 
duce antibodies, making liposomal vac- 
cines promising candidates for disease 
prevention. 

We don't always understand why 
liposomal drugs work, and probably 
no single hypothesis will explain all 
successes. Nevertheless, an increased 
understanding may well come from a 
knowledge of the morphological changes 
that occur both when vesicles are di- 
luted in the blood stream and when they 
come into contact with living matter. 
Clearly if the "wrong" phase change 
takes place when a liposomal drug is 
diluted in the blood-for example if 
the vesicles transform into open sheets 
and release their drug prematurely- 
encapsulation will have been in vain. 
For this reason neutron-scattering stud- 
ies of vesicle structures are an important 
element in the development of liposomal 
drug-delivery systems. 

Here at the Los Alamos Neutron 
Scattering Center, Rex Hjelm has made 
extensive studies of spontaneous vesicle 
formation in a mixture of the bile salt 
glycocholate and lecithin suspended in 
water. Such spontaneous liposome for- 
mation could greatly reduce the costs 
of drug-delivery systems. The mor- 
phologies of particles formed in the 

(a) Two-Component Micelle 

, 
Hydroxyl 
Group 

Glycocholate, 
Molecule 

(b) Vesicle 

Rod-like 
Micelle \ 

Lecithin 
Bilayer 

Glycocholate ' 
J Dimers 

PARTICLES INVOLVED IN FAT DIGESTION 

Fig. 4. Depending on their concentration in aqueous solution, molecules of the lipid lecithin and 
the bile salt glycocholate form a variety of structures. (a) At high concentrations and high molar 
ratios of glycocholate to lecithin, globular particles form. The lecithin molecules form bilayers 
with their hydrophobic tails (red) pointed inwards and their hydrophilic heads (blue) exposed to 
the aqueous environment. It is thought that the glycocholate molecules stabilize the bilayers 
by forming a "ribbon" two molecules wide that wraps around the particle, further isolating the 
lecithin tails from the water. The hydrophilic, hydroxyl-containing surfaces of the glycocholate 
molecules form the outside of the ribbon. Neutron-scattering data show that the particles are 50 
angstroms high and 50 angstroms in diameter and suggest that they assemble into long rods 
as the system is diluted. Particles of this kind are thought to occur naturally in the liver and 
the gall bladder for the purpose of removing lipophilic products-cholesterol, for example~from 
the liver. (b) When the concentration of glycocholate drops below a critical level as a result of 
dilution, vesicles form. Less glycocholate is available to associate with the lecithin, and the 
two-component micelles in (a) are no longer stable. Instead it is thought that the glycocholate 

molecules form dimers that act as wedges within the lecithin bilayer, causing it to curve and 
form a hollow sphere, or vesicle. The precise details of this dramatic rearrangement are not yet 
known. Such vesicles are thought to occur naturally in the digestive tract, emulsifying dietary 

fats and thus enhancing the effects of digestive enzymes. 
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glycocholate-lecithin system depend 
on a number of factors, including con- 
centration; thus a knowledge of how 
the particles evolve from micelles at 
high concentrations to vesicles at low 
concentrations is essential to the de- 
velopment of liposomal drugs. The 
glycocholate-lecithin system is all the 
more interesting as it is an essential 
component in the digestion of fat from 
mammalian diets. Although glyco- 
cholate and lecithin are both arnphi- 
philic, the glycocholate is far more sol- 
uble, and the combination of the two 
seems more efficient for solubilizing 
fats in the digestive tract than either 
alone. The emulsification of fats by 
the glycocholate-lecithin combination 
appears also to enhance the action of 
digestive enzymes. 

A peculiarity of the glycocholate- 
lecithin combination is that the particles 
it forms tend to grow larger as the sys- 
tem is diluted in water, down to a low 
concentration at which they transform 
to vesicles. Such behavior is oppo- 
site to the usual effect of dilution. As 
Hjelm and his collaborators added wa- 
ter to their glycocholate-lecithin system 
they observed that the form of the neu- 
tron scattering law had changed in a 
manner qualitatively consistent with a 
change from globular micelles to rod- 
like structures. However, attempts to 
fit the data to the scattering law of a 
population of uniform-sized cylindri- 
cal micelles were not very successful; 
evidently, cylinders of different sizes 
were present in the suspension. To find 
out the size distributions of the parti- 
cles, Hjelm and Devinderjit Sivia used a 
method of analysis known as the max- 
imum entropy method. They assumed 
the system contained cylindrical mi- 
celles whose radii and heights could 
take any value within a reasonable range 
and calculated the neutron scattering 
law for each combination of radius and 
height. Then they applied the maxi- 
mum entropy method to the observed 

scattering law to determine the best es- 
timate of the number of micelles with 
each height and radius. (Their results 
are plotted as equi-population contours 
in Fig. 11 of "Bayesian Inductive Infer- 
ence, Maximum Entropy, and Neutron 
Scattering.") At a concentration of 16.7 
grams per liter, most of the particles 
had globular structures with heights cen- 
tered at 50 angstroms and radii centered 
at 25 angstroms. At a concentration of 
10 grams per liter, a new population 
of elongated particles emerged in addi- 
tion to the first group. Remarkably, the 
second population had about the same 
mean radius as the first but twice the 
mean height. Finally, on dilution to 7.1 
grams per liter, a third population with 
a height three times greater than the first 
began to emerge. Since a lecithin bi- 
layer is about 50 angstroms thick, these 
data strongly indicate that the elongated 
particles are built up of disks composed 
of lecithin bilayers. At present, Hjelm 
and his collaborators believe the gly- 
cocholate molecules wrap like a ribbon 
around the circumference of the lecithin 
disks (Fig. 4). 

Polymer Colloids. Association col- 
loids such as micelles and vesicles are 
not the only type of colloids in our ar- 
senal of modem materials. In another 
type of colloid called a latex, the core 
of each particle consists of long polymer 
molecules. Latices were first produced 
by a process called emulsion polymer- 
ization as part of the development of 
synthetic rubber during World War 11. 
In emulsion polymerization, droplets 
of monomers of an insoluble synthetic 
resin are kept in colloidal suspension by 
the addition of a suitable surface-active 
agent, or surfactant, composed of am- 
phiphilic molecules. To this emulsion 
is added a small quantity of free-radical 
polymerization initiator, which diffuses 
through the surfactant shell and causes 
the monomers within to polymerize. 
The process produces a colloidal disper- 

sion of polymeric, synthetic-resin micro- 
spheres, each surrounded by a surfactant 
layer that prevents their aggregation. 
At moderate particle concentrations, 
this dispersion has the appearance of a 
milky, white liquid. 

Latex particles of different sizes and 
size distributions can be produced for 
a variety of industrial applications. For 
example, the particles may be dried to 
form a continuous film of latex paint, 
paper coating, carpet backing, or ad- 
hesive. They may also be used as pig- 
ments, as length calibration standards 
for electron microscopy, and as carriers 
for antigens in diagnostic immunological 
tests. To improve the latices-to design 
a better paint, for example-it is essen- 
tial to have a detailed understanding of 
the process of emulsion polymerization 
and an accurate characterization of the 
structural and chemical properties of the 
latices that are produced. Without such 
knowledge design of new materials is a 
hit-and-miss affair. 

Different characteristics of latices are 
important for different technologies, and 
no single investigative technique can 
provide a complete description of all 
particle properties. However, many of 
the properties of importance are struc- 
tural. Examples include the mean par- 
ticle size, the morphology of particles 
with more than one component ("avo- 
cado" or "current bun," for example), 
the type of force between particles, the 
thickness of the amphiphilic stabiliz- 
ing layer that surrounds each particle, 
and the texture of the particle surface 
(rough or smooth). Once again, much 
of this information can be obtained by 
small-angle neutron scattering. Over the 
last decade, university and industrial re- 
searchers have performed a number of 
small-angle neutron-scattering experi- 
ments to determine the distribution of 
particle sizes in dilute latices contain- 
ing one type of polymer. This inforrna- 
tion may be obtained either by fitting 
the scattered-neutron intensity to an as- 
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sumed distribution of particle diarne- 
ters or by using the maximum entropy 
method to determine the most proba- 
ble distribution. In either case, neutron 
scattering provides a simple alternative 
to the laborious counting of latex par- 
ticles in electron micrographs. Results 
from these two techniques usually agree 
well. Contrast matching has also been 
used successfully to determine both the 
composition and structure of copoly- 
mer particles, that is, of particles formed 
from two different types of polymer 
molecules. Such information cannot be 
obtained by any other means. 

To determine the composition of 
the particles of a copolymer latex, re- 
searchers collect SANS data for suspen- 
sions of the latex in various mixtures 
of H 2 0  and D20. Because I (O), deter- 
mined by extrapolation from the Guinier 
plot described earlier, is proportional 
to (pp -  the square of the differ- 
ence between the average scattering- 
length density of the particles and the 
average scattering-length density of the 
solvent-a graph of \/I0 versus ps 
yields a straight line (Fig. 5). The in- 
tersection of that line with the & axis 
(the point at which I(0) = 0, or the 
contrast-matching point) is equal to pp. 
For example, the data in Fig. 5 lead to a 
value for pp of 4.94 x 101Â ~ m - ~ .  The 
composition of a copolymer latex may 
then be obtained directly by solving the 
following equation for c: 

where c is the fraction of polymer A in 
each particle and (1 - c) is the fraction 
of polymer B. The quantities PA and 
p~ are the scattering-length densities 
of polymer A and polymer B, respec- 
tively. They can be deduced from the 
scattering lengths of the atoms in the 
molecules and their known molecular 
volumes. Alternatively, experimental 
values for PA and pg can be obtained by 
measuring the contrast-matching points 
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DETERMINING THE COMPOSITION OF A COPOLYMER LATEX 

Fig. 5. Neutron-scattering data for copolymer-latex particles dispersed in water can reveal the 

relative amounts of the two polymers (here polystyrene and polyacrylonitrile) in the particles. 

The intensity of the neutrons scattered through zero degrees, /(O), is proportional to the square 
2 of the scattering contrast, (pp - i s )  , where fin is the average particle scattering-length density 

and ps is the average solvent scattering-length density. Thus, a graph of Vl{0) versus ps should 

be a straight line, and the intersection of that line with the ps axis (the point at which v//o = 0 

and hence pp = ps) equals pp for the latex particles. The three data points shown were obtained 

by varying the percentage of D2O in the water; for two of the data points the contrast is positive 

(pp - ps > O), and for the third the contrast is negative (pp - ps < 0). We can then use 

Eq. 3 in the text to determine the relative amounts of polystyrene and polyacrylonitrile in each 

particle. The data shown correspond to latex particles containing 63.6 percent polystyrene and 

36.4 percent polyacrylonitrile. (Data courtesy of R. H. Ottewill of the University of Bristol.) 

of latices prepared from the individual 
polymers. 

In many cases it is possible to adsorb 
molecules-such as paint pigments or 
drugs-onto the surfaces of latex parti- 
cles. To determine how many molecules 
are adsorbed under different chemical 
conditions, SANS measurements are 
first performed on bare particles in a 
series of solvents of different contrasts 

in order to determine the scattering- 
length densities of the particles. Then 
the molecules of interest are adsorbed 
onto the latex particles, and the scatter- 
ing law for the composite particles is 
measured in a solvent whose scattering- 
length density equals that of the latex 
particles alone. The observed scatter- 
ing law is due to the shell of adsorbed 
molecules only. By fitting the observed 
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scattering law to that expected for a 
spherical shell, the total amount of ad- 
sorbed chemical may be determined. If 
the molecules are absorbed into the la- 
tex rather than adsorbed on the surface, 
the particles usually swell. Absorption 
can be discriminated from adsorption 
because a contrast-matching point can 
be found for uniform swollen particles 
but not for particles with a core-and- 
shell morphology. 

Polymers 

Of course, polymer molecules do not 
occur only as constituents of latex par- 
ticles dispersed in a solvent. Most often 
in our everyday experience, an assembly 
of polymers is a solid lump-a tele- 
phone housing or a fishing pole-rather 
than a constituent of a milky liquid. De- 
pending on the chemical composition of 
the polymer molecules and the method 
of preparation, a bewildering variety of 
mechanical, electrical, and optical prop- 
erties can be achieved. In many cases 
the properties depend sensitively on the 
organization of the polymer molecules, 
that is, on the local molecular struc- 
ture (Fig. 6). For example, a fiber made 
of Kevlar is very difficult to break be- 
cause the polymer molecules in the fiber 
are stretched out along its length rather 
than being coiled around like tracks in 
a labyrinth. The strength of the Kevlar 
fiber is determined to a significant ex- 
tent by the strength of carbon-carbon 
chemical bonds along individual poly- 
mer molecules. Fibers made of coiled 
polymer molecules, on the other hand, 
tend to stretch and break when pulled 
because the polymer molecules are only 
weakly linked and tend to slide over one 
another. 

We know that individual polymer 
molecules are made of several thousand 
repeated subunits, called monomers, and 
that they are very long; an average'poly- 
mer with a molecular weight of 200,000 
daltons has a stretched length of several 

(a) UHMW PE Gel (b) UHMW PE Fibers 

ULTRA-HIGH-STRENGTH FIBERS 

Fig. 6. The tensile strength and stiffness of fibers made from ultra-high-molecular-weight 
polyethylene (UHMW PE) depend on the extension and alignment of individual polymer 
molecules-properties that depend, in turn, on the degree of polymer cross-linkage in the 
gels from which the fibers are formed. (a) A 2-percent solution of UHMW PE molecules was 
cooled to form the gel shown in this scanning electron micrograph (magnification = 1000). The 
structure of the gel reflects agitation of the solution prior to cooling. (b) This scanning electron 
micrograph shows a dried gel from a 0.6-percent solution of UHMW PE that has been drawn to 
130 times its original length. (The draw direction was diagonal.) Note the extremely high degree 
of orientation. Over the last decade advances in techniques for manipulating the structures of 
UHMW PE gels by changing conditions and concentrations of the original solutions have led to 
rapid Increases in the tensile strength of commercial fibers. (Micrographs courtesy of Paul Smith, 
University of California, Santa Barbara.) 

microns (1 micron = 10,000 angstroms). 
But the long molecules are not usually 
stretched out unless special techniques 
have been used for synthesis, so how 
are they usually arranged? Before neu- 
tron scattering answered this question 
in the early seventies, there were sev- 
eral competing theories. One was based 
on a random coiling of the polymer 
molecules-much like a plate of well- 
mixed spaghetti. Another held that a 
large fraction of the polymer molecules 
were quasiparallel over some large frac- 
tion of their length. 

According to the random-coil model, 
the radius of gyration of a polymer 

molecule-which is a measure of the 
length of the molecule just as the di- 
ameter of a loosely wound ball of wool 
is a measure of the length of wool in 
the ball-ought to be proportional to 
the square root of the molecular weight 
of the polymer if the polymer is sus- 
pended in an ideal solvent, one that sup- 
ports molecules rather than changing 
their conformation. Neutron-scattering 
researchers tested this prediction us- 
ing small-angle scattering. Once again, 
the technique of selective deuteration 
allowed them to see a few select poly- 
mer molecules winding through a con- 
glomeration of many others-essentially 
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the deuterated polymer molecules stood 
out from the background of their hy- 
drogenated brethren just as a strand of 
spinach spaghetti would stand out in 
a plate full of the normal variety. The 
radii of gyration obtained by neutron- 
scattering experiments of this type for 
many different polymers were in im- 
pressive agreement with the predic- 
tion of the random-coil model. How- 
ever the argument did not conclusively 
prove the model correct because it could 
not rule out a significant degree of lo- 
cal molecular alignment. To investi- 
gate this point, neutron-scattering data 
had to be obtained at greater values of 
Q,  between about 0.1 and 0.6 inverse 
angstroms, where the conformation of 
the molecules is probed over distances 
smaller than their size, that is, between 
10 angstroms and 50 angstroms. The 
idea was to see if polymer molecules 
line up with each other along segments 
within that size range. Comparisons of 
such data and calculations based on the 
random-coil model showed very good 
agreement for a variety of amorphous 
polymers and no indication of quasipar- 
allel packing. 

Fractal Objects 

Many of the objects encountered in 
sludge science are disordered-polymers 
and ceramics, for example. Such ma- 
terials seldom display the translational 
and rotational symmetries encountered 
in crystals and so cannot be character- 
ized geometrically by such concepts. 
Fortunately a type of geometry called 
fractal geometry can be applied to the 
description of many disordered materi- 
als. Moreover, neutron scattering can 
be used to study objects that exhibit this 
type of geometry. 

Fractal geometry was introduced al- 
most two decades ago by Benoit Man- 
delbrot to describe objects-such as 
trees, clouds, mountains, and lakes- 
that cannot be described by normal Eu- 
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clidean geometry because their surfaces 
or coastlines are too "bumpy." Man- 
delbrot's central observation was that 
many of the objects whose structure 
he sought to describe are self-similar 
when dilated (Fig. 7). For example, if 
we magnify a piece of coastline on a 
map, the image we obtain looks very 
much like the original. Small inlets now 
look much like fjords, and fjords have 
become ocean. Similarly, under dilation 
small islands in an archipelago look like 
the larger ones on the original map, but 
the overall appearances of the enlarged 
and original maps are very similar. This 
type of self-similarity is usually referred 
to as statistical to distinguish it from the 
exact dilational symmetry displayed by 
geometrical patterns such as the Sier- 
pinski gasket. Statistically self-similar 
objects~clouds for example-look ap- 
proximately the same under dilation. 

Self-similarity is an appealing con- 
cept, and one can easily list examples 
of self-similar, or fractal, objects from 
many fields of study: blood vessels, 
lungs, tree bark, lightning, and galax- 
ies are obvious candidates. But how do 
we say something exact about them? 
The answer was provided many years 
ago by Hausdorff and other pure math- 
ematicians who had no idea that their 
theorems would be applied to natural 
phenomena. They examined how some 
measure of an abstract object, such as 
the distance between elements of the 
object, changes with the length scale 
on which this property is examined. 
This basic idea is easily applied to con- 
crete examples such as the coastline 
of Norway. Suppose we try to mea- 
sure the length of this jagged coastline. 
Clearly, if we use a long "ruler" we 
will jump across fjord entrances and get 
the wrong answer. To avoid this prob- 
lem we could use a shorter ruler. But 
since the coastline is self-similar we 
will still jump over some inlets-they 
will just be smaller than the ones we 
missed with the larger ruler. Of course 

we could continue this process ad  nau- 
seam, using smaller and smaller rulers, 
but because the coastline is self-similar, 
the total length we measure will always 
depend on the length of the ruler we 
use. Such a result clearly has no place 
in Euclidean geometry! However, if we 
use enough different rulers, we eventu- 
ally find that the length of the coastline 
is proportional to the ruler length raised 
to the power (1 - D), where D is called 
the fractal dimension of the coastline. 
For the coastline of a Euclidean object, 
such as a triangle, the fractal dimension 
is unity-the usual Euclidean dimen- 
sionality of a line-so its length is (for- 
tunately for Euclid) independent of the 
length of the ruler used to measure it. 
The fractal dimension of the Norwegian 
coastline is about 1.2, illustrating that 
D is not usually an integer for fractal 
objects. 

The concept of fractal dimension can 
also be applied to "solid" objects. The 
mass m of a sphere of uniform den- 
sity scales as the cube of its radius r :  
m = $xpr3. What about the mass of 
a spherical hunk of foam or a porous 
rock? Such a self-similar structure con- 
tains a great deal of "air"; so its mass 
fractal dimension-the power of a single 
dimension that is proportional to the ob- 
ject's mass-will be less than three. By 
the same token, a fractally rough surface 
has a larger area than a smooth surface; 
so its fractal dimension is greater than 
2, the Euclidean dimension of smooth 
surfaces. 

Materials scientists use fractal geom- 
etry because many growth and aggrega- 
tion processes tend to form disordered 
systems that can only be characterized 
as fractal. Even simple polymers are 
fractal: according to the random-coil 
model of polymers mentioned earlier 
in this article, the mass of a polymer in 
an ideal solvent scales as the square of 
its radius of gyration; its mass fractal 
dimension is 2. Other examples range 
from dendrites in metals to glasses. Of- 
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(a) Sierpinski Gasket 

(b) Fractal Coastline 

x 22O 

SELF-SIMILARITY 

Fig. 7. The concept of self-similarity is essential to fractal geometry. (a) In the exactly self-similar pattern known as the Slerpinski gasket, any upright, 
triangular section of the pattern can be be made identical with any other upright, triangular section by dilation or shrinking. (The pattern is assumed 
to repeat indefinitely.) Obviously the maps shown in (b) do not display such exact dilational symmetry-it is impossible to expand one and overlay 
it exactly on another. On the other hand, enlargement of the part of each figure inside the small box gives the suceeding figure, and one can easily 
imagine that both figures are part of the same map. (The original map appears at the end of the series of enlargements to show that this similarity 
exists between coastlines of any magnification.) Such shapes are called statistically self-similar. The algorithm used t o  generate these pictures, 

called fractal Brownian motion, is similar to that employed by film-makers who wish to draw realistic mountains and lakes. (Fig. 8b @Richard 
VossIIBM Research.) 
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ten fractal patterns appear in systems 
that develop far from thermal equilib- 
rium. For example, under non-equilib- 
rium conditions aggregating particles 
may stick to a growing cluster at posi- 
tions other than those that would yield 
the lowest free energy, whereas at ther- 
mal equilibrium particles tend to bounce 
around until they find those positions. 
For this reason open, dispersed struc- 
tures are formed rather than the compact 
crystalline structures typical of growth 
under equilibrium conditions (Fig. 8). 
The type of structure produced depends 
to a large extent on the details of the 
non-equilibrium growth process. Mate- 
rials researchers have begun simulating 
such growth processes on computers 
(Fig. 9) and comparing the structures 
the simulations produce with the struc- 
tures of samples produced in carefully 
controlled experiments. The essential 
grounds for comparison are the fractal 
dimensions of the structures. Neutron 
and x-ray scattering are ideal techniques 
for measuring the fractal dimension of 
macromolecular structures because they 
can probe length scales ranging from 
interatomic distances to the sizes of 
many molecular aggregates (Fig. 10). 
Furthermore the scattering laws for frac- 
tal systems are simply power laws- 
the scattered-neutron intensity is pro- 
portional to Q raised to some power. 
For mass fractals the exponent is equal 
to -Dm, where Dm is the mass frac- 
tal dimension of the scattering object, 
whereas for compact objects with frac- 
tally rough surfaces, the exponent is 
equal to 6 - Ds, where Ds is the frac- 
tal dimension of the surface. Thus, for 
fractal objects encountered in sludge 
science, the slope of a plot of the log- 
arithm of scattered-neutron intensity 
versus the logarithm of Q is simply 
related to Dm and Ds. By comparing 
experimental values of Dm with those 
predicted by different growth models, 
the growth process in each experiment 
can be inferred. Because no naturally 

PRODUCTS OF DIFFERENT AGGREGATION RATES 

Fig. 8. In an elegant experiment with simple equipment, Skjeltorp was able to show that the form of 
aggregated matter depends sensitively on the speed of accretion. A colloid of negatively charged, 
1.1-micron-diameter plastic spheres was suspended in water and placed on a microscope slide, 
together with a few 5.5-micron spheres. When a cover slip was placed over the drop, the larger 
spheres acted as spacers, defining a single layer within which the smaller spheres moved In a 
Brownian fashion as a result of collisions with water molecules. By adjusting the salinity of the 
colloid, Skjeltorp was able to control the repulsion between the spheres, and thus the rate of 
accretion. With a small repulsive interaction, particles tend to stick together when they collide; 
with a larger repulsive interaction, the particles undergo many collisions, exploring configurations 
of different total energy before finding one that lowers the energy of the system enough to allow 
accretion. Thus, larger repulsive interactions correspond to slow growth under conditions close 
to thermal equilibrium. The figure shows micrographs of the aggregates produced and the rate of 
change of average radius for each aggregate. (The crystalline aggregate took over six months to 
form.) Experiments like this one provide a visual framework for interpreting the fractal dimensions 
of molecular aggregates, data which can be obtained by neutron-scattering experiments. This 
experiment was reported by Arne Skjeltorp in "Visualization and characterization of colloidal 
growth from ramified to fractal structures" (Physical Review Letters 57, p. 1444 (1987)). 

Los Alarms Science Summer 1990 



Sludge Physics 

Diffusion-Limited Aggregation 

Witten and Sander 

DLCA 

Ballistic Aggregation 

D = 3.00 

Sutherland 

Reaction-Limited Aggregation 

Eden 

RLCA 

COMPUTER MODELS OF NON-EQUILIBRIUM GROWTH PROCESSES 

Fig. 9. Computer simulated non-equilibrium growth processes produce three-dimensional structures with characteristic mass fractal dimensions 

(their two-dimensional analogs are shown here). Diffusion-limited aggregation (DLA), invented by Witten and Sander, simulates growth by placing 

a seed particle, or monomer, at a point on a grid and allowing other, similar particles to diffuse inwards from the edges of the grid in a series of 

random steps. The cluster, initially represented by the seed, grows if a particle lands on a site next to it. Because the particles move randomly, 

few of them ever penetrate to the interior of a growing cluster and accretion takes place at the tips. This so-called monomer-cluster growth results 

in a highly ramified structure with a mass fractal dimension of 2.5. An even more open structure, with a fractal dimension of 1.8, is formed by 

cluster-cluster growth, that is, if the growing DLA clusters are allowed to move around and aggregate with each other. The ballistic growth model 

invented by Void-which is applicable to some gas-phase growth processes-assumes the same aggregation conditions as DLA, except that the 

particles travel in straight-line, or ballistic, paths before sticking to a cluster. Thus some penetrate to the center of the growing cluster, and a more 

compact aggregate is formed. Again, if clusters are allowed to move and aggregate, a more open structure is formed. Reaction-limited aggregation, 

which was invented by Eden, simulates growth in which some chemical barrier to aggregation, rather than the type of particle motion, determines 

when a particle sticks to a cluster. Thus a particle must land on sites next to the growing aggregate several times before sticking, and extremely 

compact particles are formed. Again, if clusters are allowed to move and aggregate, a more open structure is formed. Most branched polymers in 

solution follow reaction-limited kinetics. The important point to note is that the fractal dimensions of the clusters, and the visual impressions they 

give, vary considerably with the growth conditions. (Figure courtesy of Paul Meaken; reprinted with permission from Kluwer Academic Publishers.) 

occurring object can be self-similar un- 
der dilation of arbitrary magnitude, a 
straight-line plot is obtained only over a 
range of Q values corresponding to the 
specific length scale of self-similarity. 
For example, the aggregates shown in 
Fig. 9 can be self-similar only on length 
scales between the size of an individ- 
ual particle and the size of a cluster. 

Fumed Silica. Alan Hurd and his 
collaborators have successfully used 
neutron- and light-scattering techniques 
combined with computer growth models 
to investigate the growth of fumed silica 
particles. This material is prepared com- 
mercially by burning SiC14 in hydrogen 
and oxygen to produce highly ramified 
silica clusters, which are used to modify 

the flow properties of foods and paints. 
(Next time you visit your local super- 
market check the ingredients of com- 
mon foods. It is not unusual to find that 
one of the ingredients is silica-sand 
by another name!) A similar process is 
used to make the starting materials for 
optic fibers. By conducting scattering 
experiments on samples obtained from 
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Phase-Separated Material 

SCATTERING LAWS AT DIFFERENT 
LENGTH SCALES 

Fig. 10. The black and white regions represent 

single-phase fractal clusters that are assumed 

to have separated from a highly disordered 
material by a non-equilibrium process. The Dominant Structures at Decreasing Length Scales 

shape of the scattering law for the phase- 

separated material (plotted as log l ( 0 )  versus 

log Q) changes as 0 increases because the 

material's nonuniformity is being probed 

at different length scales. Small values of 
0 probe long length scales, whereas large 

values of 0 probe short length scales. In the 

Guinier region, where OR K 1, the scattering 

law measures the overall cluster size R of 

each phase. As 0 increases, the internal 

fractal structure of the clusters is probed, 

and a scattering law of the form 0 -& ,  

where Dm is the mass fractal dimension, is 

Individual Clusters Mass Fractal Surface Fractal Atomic Lattice 

observed. When Q exceeds a value close 
to the inverse size of the holes in the fractal 

clusters, the surfaces of the aggregates are 

probed, and the scattering law changes to the 

form where Dc is the surface fractal 

dimension of the clusters. Finally, at large 

Bragg Regime 1 Guinier 1 
1 Regime 1 
I I 
I I 

Porod Regime 

values of 0 ,  the scattering pattern evolves 

to a form containing Bragg peaks, which 

are characteristic of structural variations on 

atomic length scales. (Adapted from a figure 

in an article by Dale Schaefer. Proceedings of 

the Royal Society of London A423: 37, 1989.) 

SiC4/H2/02 flames, Hurd and his col- 
laborators deduced that three processes 
are involved in the formation of fumed 
silica particles. In the early stages of 
growth Si02 monomers aggregate to 
form compact, rough-surfaced clusters 
resembling those produced by the ballis- 
tic monomer-cluster aggregation process 
(Fig. 9) and grow to sizes approaching 

100 angstroms. Because the flame tem- 
peratures are near the melting point of 
silica, annealing competes with aggrega- 
tion and the particles become smoother 
as they grow. Later in the growth pro- 
cess, when no more monomers are pres- 
ent, these smooth particles tend to coa- 
lesce, forming micron-sized aggregates 
whose fractal dimensions characterize 
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CERAMIC PRODUCTS AND THEIR PRECURSORS 

1 Fig. 11. Depending on the initial conditions of growth, precursor particles made from a single monomer can lead to final products with widely 

varying properties. Reaction-limited cluster-cluster aggregation under acidic catalysis conditions yields polymerized precursors with a fractal 
dimension of 2.09. The highly ramified polymers then cross-link to form gels that collapse on drying into hard, high-density films. Such films are 

used as insulating layers in integrated circuits, and research is under way to use them as ferroelectric, nonvolatile computer memory-elements. 

Reaction-limited monomer-cluster a gregation forms compact, rough-surfaced colloidal particles, which then aggregate through cluster-cluster 9 
growth. Because the gels so formed are denser and much stronger at short length scales than those already discussed, they do not collapse when 

dried but rather form extremely porous, diaphanous materials called aerogels. Researchers hope to exploit the high surface area of aerogels to make 

transparent materials for insulating passive solar walls; however, present production costs are too high. In the traditional method of producing 

1 hard, durable, ceramic material for everyday use, smooth colloidal particles are grown under near equilibrium conditions, compacted, and then fired. 

(Adapted from a figure in Science 243 (1989): 102.) 

them as products of the diffusion-limited 
cluster-cluster aggregation process. 

The importance of experiments like 
those carried out on fumed silica is that 
they provide an understanding of the 
relationship between growth conditions 
and the structures of the aggregates pro- 
duced (Fig. 11). Materials scientists can 
use this information to tailor growth 
conditions and produce the structures 
required for particular applications. For 
example, silica aggregates, similar in 
chemical composition to the fumed sil- 
ica described in the previous paragraph, 
can be produced in solution by poly- 
merization of silicic acid. Depending 
on the pH of the reaction bath, how- 
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ever, quite different structures are pro- 
duced. Catalysis of the reaction under 
acidic conditions produces a highly 
ramified, polymeric silica with a mass 
fractal dimension of about 2 by the 
reaction-limited cluster-cluster aggre- 
gation process. This silica collapses eas- 
ily on drying and produces high quality 
protective films. On the other hand, a 
rough-surfaced, compact, colloidal sil- 
ica, which is formed under basic catal- 
ysis conditions by the reaction-limited 
monomer-cluster process, is resistant to 
collapse and much more suitable for the 
production of porous, high-surface-area 
materials. Once again we see that an 
understanding of structure, which can 

be provided by neutron scattering, is 
a prerequisite for the development of 
strategies for material preparation. 

Composite Materials. Composites 
are multi-component materials in which 
an attempt is made to retain the useful 
properties of each component. For ex- 
ample, fumed silica is often combined 
with silicone elastomers to increase 
the strength of the elastomer while re- 
taining its elastic properties. Figure 12 ' 
shows some typical experimental re- 
sults obtained by Dale Schaefer and his 
collaborators at Sandia National Labora- 
tories. The lower curve shows that the ' 

elastic modulus of pure polydimethyl- 
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1.2 

Siloxane with M-5 Silica 

Siloxane with EH-5 Silica 

Pure Siloxane 

-1 
Elongation 

STRENGTH OF SILICA-SILOXANE COMPOSITES 

Fig. 12. The properties of siloxane composites containing fumed silica as a reinforcing agent 

vary widely depending on the structure of the fumed silica particles. Pure siloxane rubber can be 

stretched to approximately four times its original length before it breaks. It also has a low elastic 

modulus, so little force is required to stretch it. (Elastic modulus is defined as the ratio of the 

applied force per unit cross-sectional area to the elongation, where the elongation equals the ratio 

of the change in length to the original length.) Pure siloxane rubber also grows progressively 

weaker as it stretches. Siloxane reinforced with rough-surfaced EH-5 fumed silica has a higher 

elastic modulus and breaks at a much lower elongation than pure siloxane. Smooth-surfaced 

M-5 fumed silica is a better reinforcing agent; it forms a composite that has a somewhat higher 

elastic modulus and breaks at an intermediate elongation. Researchers had expected composites 

of siloxane and the rough-surfaced EH-5 to perform best. They now think that particle size may 

be a more important property than surface texture because M-5 particles are larger than EH-5 

particles. In addition, the higher-temperature growth process that smooths the surfaces of the 

M-5 particles may also strengthen them and hence the composite rubber. (Figure courtesy of 

Dale Schaefer, Sandia National Laboratories.) 

siloxane is small and becomes smaller 
as the material is elongated (that is, as 
we move left along the horizontal axis). 
A small elastic modulus means the ma- 
terial stretches with little applied force. 
After three-fold elongation the mate- 
rial breaks-there are no further data 
points to the left. When the elastomer 
is reinforced with two types of fumed 
silica, M-5 and EH-5, much higher elas- 
tic moduli are found, but the composite 
materials break at smaller elongations 
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than does the pure "rubber." Scatter- 
ing data show that the M-5 fumed sil- 
ica has a smooth surface whereas the 
EH-5 fumed silica has a rough surface. 
Therefore, the elastic modulus data in- 
dicate that smooth silica particles pro- 
duce better reinforcement than rough 
ones-a somewhat counterintuitive 
result. Similar studies are underway 
at LANSCE to examine the relation- 
ship between the structures of carbon 
blacks-usually thought of as amor- 

phous forms of carbon-and the proper- 
ties of the rubber produced when carbon 
black is used as a reinforcing agent. 
Information obtained in these investi- 
gations is potentially of great economic 
importance-a decrease of 1 percent in 
the fuel consumption of automobiles due 
to improvement in tire rubber is worth a 
billion dollars or more every year! 

Molecular composites differ from the 
conventional variety described above in 
that the filler is generated in situ dur- 
ing production rather than by mixing. 
Multiphase materials of this type, in 
which the phases are dispersed at the 
100-angstrom level, offer great possi- 
bilities for the enhancement of material 
properties, but it is difficult to design 
materials until the relationship between 
synthetic protocol, structure, and prop- 
erties has been established. A case in 
which these relationships have been in- 
vestigated is that of composites made by 
swelling a polydimethylsiloxane rubber 
with tetraethylorthosilicate and polymer- 
izing the swelled material to produce 
SiOz-that is, glass-precipitates. This 
process was pioneered by J. E. Mark at 
the University of Cinncinati. The struc- 
ture of the precipitated silica turns out 
to be very sensitive to chemical con- 
ditions prevailing during the synthesis, 
and the resulting silica and rubber com- 
posites vary significantly in elasticity 
and strength. Under some conditions, 
scattering experiments show that a bi- 
continuous network of glass and rubber 
is formed by a process called spinodal 
decomposition, yielding brittle compos- 
ites. Under different chemical condi- 
tions the glass filler appears to have a 
polymeric mass-fractal character that 
enhances the extensibility of the result- 
ing composite. Those who have studied 
molecular composites of this sort ad- 
mit that they are often wrong in their 
intuitive guesses about the relation- 
ship between filler morphology and the 
mechanical properties of the resulting 
composite. There is no substitute for a 
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careful cataloguing of the relationships 
between synthetic protocol, structure, 
and properties. 

Surfaces 

Earlier in this article I described a 
way of using small-angle neutron scat- 
tering to examine particle-like struc- 
tures formed by amphiphilic molecules. 
Complementary information concern- 
ing surface structures formed by am- 
phiphilic molecules can be obtained 
from neutron reflectometry by adsorbing 
the molecules on a liquid and reflecting 
neutrons from the air-liquid interface 
(see "Neutron Scattering-A Primer" 
for an account of neutron reflectome- 
try). As is so often the case, substitution 
of deuterium for hydrogen in both the 
molecules and the liquid increases the 
power of neutron scattering for such 
studies. One can even make the liquid a 
mixture of HaO and D20 that does not 
reflect neutrons at all, so that only the 
amphiphilic molecules at the surface are 
visible to neutrons! Both the amount 
of material adsorbed at the surface and 
many of the structural properties of the 
surface layer can be determined by re- 
flectometry. For example, measurements 
on a variety of amphiphilic molecules 
show that the adsorbed layer usually 
consists of three principal regions. The 
first, nearest the vapor, contains only 
hydrocarbon chains; the second contains 
a small fraction of chains, the negatively 
charged head groups, solvent, and a few 
cations such as Na+; the final region 
contains solvent and a diffuse atmo- 
sphere of ions. The thickness of each 
region can be established by reflectom- 
etry, as can the fractions of the various 
components in each region. When the 
thickness of the first region is less than 
the length of the hydrocarbon chains, 
an average tilt angle for the chains can 
sometimes be determined. The strong 
resemblance these layers bear to one 
side of the lipid bilayer discussed ear- 

lier suggests that neutron reflectometry 
can be used to study model biological 
membranes; indeed, such studies have 
already started at several facilities. 

Block copolymers-polymers made 
up of a string of monomers of one type 
(block A) linked to a string of mono- 
mers of another type (block B)-are 
used as surfactants, compatibilizing 
agents in polymer blends, and adhe- 
sives in biomedical and microelectronics 
applications. Very often the individual 
polymer blocks segregate, giving rise to 
heterogeneous arrangements consisting 
either of alternating layers (lamellae) or 
of rods of one block embedded in a ma- 
trix composed of another block. Such 
structures are often disorganized in bulk 
samples, making them very difficult to 
study. For example, the lamellae may 
be broken up and disorganized with re- 
spect to their neighbors. In copolymer 
films, on the other hand, one or other 
polymer block usually has an affinity 
for the film surface; thus lamellae are 
formed in an ordered way, parallel to 
the surface of the film. Neutron reflec- 
tometry is an ideal tool for investigating 
such copolymer films because the con- 
trast variation technique, implemented 
through selective deuteration, can be 
used to highlight one or the other of the 
polymer blocks. 

The copolymer films studied so far at 
LANSCE (and other neutron-scattering 
centers) are formed by placing a drop 
of solvent containing the copolymer 
on the surface of a silicon wafer and 
spinning the wafer at high speed to pro- 
duce a uniform, thin film of copoly- 
mer as the solvent dries. The film is 
a random alloy of its polymer compo- 
nents at this stage, with both polymer 
blocks thoroughly mixed and entan- 
gled (see Fig. 13). When the polymer 
film is annealed, however, the differ- 
ent polymers segregate into alternating 
layers parallel to the plane of the film. 
The layers tend to form first at the top 
and bottom surfaces of the film, and the 

sequence of layers propagating from 
each surface depends on the affinity of 
each polymer for the interface in ques- 
tion. Thus, if the system has a lower 
free energy when polymer-block A at- 
taches to the silicon substrate than when 
polymer-block B does, the order will 
be A,B,A, ... away from the substrate 
surface. The fully annealed film pro- 
duces a complicated reflectivity profile 
from which it is possible to deduce the 
layer thicknesses as well as the defini- 
tion and shape of the interfaces between 
adjacent polymer blocks. What happens 
during the annealing process to resolve 
the competition between the order of 
layers propagating from each face of the 
film is still somewhat of a mystery and 
the subject of continuing investigation at 
LANSCE and elsewhere. 

Such studies of polymer compatibility 
bear on the crucial economic and en- 
vironmental problem of recycling plas- 
tics. In 1984 the U.S. produced 46.3 
billion pounds of plastics and discarded 
18 billion pounds of plastic wastes. Re- 
cycling of the wastes would not only 
save disposal costs but would also re- 
duce energy consumption; it is esti- 
mated that producing a fabricated plas- 
tic from waste instead of virgin resin 
would result in an 80-percent saving 
of energy. Unfortunately, it is not easy 
to make different plastics compatible. 
Various strategies such as using block 
copolymers to knit together incompat- 
ible homopolymers or using "radia- 
tion grafting" to form new materials 
from incompatible plastics have been 
proposed. To find out how well those 
techniques work, one may use neutron 
reflectometry to study the molecular 
structure of interfaces so formed be- 
tween different polymers. The same 
message that we have seen in other ar- 
eas is once again clear, but in a slightly 
different form. In this case, we need 
to understand the relationship between 
structure and properties in order to in- 
vent a new way of processing plastics. 
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NEUTRON-REFLECTOMETRY MEASUREMENTS ON A BLOCK-COPOLYMER FILM 

Fig. 13. Neutron-reflectivity profiles at three stages of the annealing of a diblock-copolymer film reveal the gradual formation of alternate layers of 

polymer A (polystyrene) and polymer B (polymethylmethacrylate). (Two of the profiles have been shifted vertically for easier reading.) The reflec- 

tivity profile of an unannealed, homogeneous film is a series of evenly spaced peaks of decreasing amplitude (an interference fringe pattern) pro- 

duced by the interference of neutron waves reflected from the film's top and bottom surfaces. The difference between the Q values at which suc- 

cessive peaks occur, AQ, is inversely proprtional to ha, the thickness of the homogeneous film. The data shown here indicate a thickness of 

2030 angstroms for the unannealed film. The reflectivity profile for the fully annealed film (heated for 24 hours at 170Â°C indicates a series of alter- 

nating microphase layers, each made up of a single polymer. The closely-spaced ripples due to interference from the whole film are superimposed 

on a new series of broader interference peaks (suggested by hairlines above the curve) due to the layers formed during annealing. Secondary-ion- 

mass-spectroscopy measurements indicated that each of these layers contained only one polymer and had a thickness of about 250 angstroms. 

Neutron-reflectometry measurements helped elucidate the long-range order and the degree of interpenetration of polymer layers. The alternating 

layers of polymer A and polymer B form because like polymers have an affinity for each other and tend to segregate together. (The bottom and 

top layers are half the size of the intermediate layers because they are formed from only one polymer block.) The reflectivity profile for a partially 

annealed film shares features of the other two. These measurements are part of a series of experiments to elucidate the processes and spatial 

relationships that dictate the final order. (The measurements were taken at LANSCE for Tom Russell of IBM.) 
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Residual Stress-A New Applica- 
tion of Neutron Scattering 

Residual stresses-or residual forces 
per unit area-can be introduced into 
mechanical components both by fabri- 
cation processes and by deformations 
that occur during use. Any operation 
involving nonuniform deformation or 
thermal gradients-forging, welding, 
bending, and machining, for example- 
can give rise to residual stress. Whether 
the stresses are detrimental or benefi- 
cial to the strength and durability of a 
component, however, depends on the di- 
rection and magnitude of forces applied 
during use. In general, a residual stress 
that adds to an applied stress is detri- 
mental to performance, whereas one that 
reduces the applied load is beneficial. 
For example, thick-walled pipes for a 
variety of applications in the chemical, 
nuclear, and armament industries are of- 
ten subjected during use to a variety of 
cyclic internal pressures. Such tubes are 
frequently fabricated with compressive 
residual stresses on the inside, close to 
the bore, to inhibit crack propagation 
and extend lifetimes. 

Anyone trying to predict the behav- 
ior of a mechanical component would 
want to know the distribution of residual 
stresses; however, most of the methods 
available for obtaining this information 
involve destruction or modification of 
the component-rather obvious draw- 
backs. An alternative, nondestructive 
method uses x-ray or neutron diffraction 
to determine local values of strain- 
that is, changes in the spacings between 
planes of atoms in the crystal. Stresses 
are then deduced from well-known re- 
lationships between stress and strain. 
At a spallation neutron source such as 
LANSCE, the deformation is determined 
by measuring the difference between 
the wavelengths of neutrons that diffract 
through a given scattering angle from 
a given set of planes in both stressed 
and unstressed samples. The differ- 

(a) Experimental Setup Incident Beam 

Detector Detector 

A 1 Enlarged View of 
Gauge Volume 

Stress 

(b) Expected Changes in Lattice Spacing Resulting from Applied Stress 

Unstrained 

Strained I i 

Applied Applied 
Stress Stress 

ent wavelengths are directly related to 
changes in the spacings of the atomic 
planes and thus to strains in various di- 
rections. Since the materials of interest 
are polycrystalline, Bragg peaks can be 
observed for any sample orientation un- 
less the individual crystal grains exhibit 
considerable preferred orientation. 

Depending on their application, the 
x-ray- and neutron-diffraction techniques 
each have unique advantages. X rays 

are very useful for measuring surface 
strains; however, they do not penetrate 
most engineering materials sufficiently 
to be useful for bulk measurements. 
Neutrons, on the other hand, penetrate 
well in most cases-20,000 times far- 
ther than x rays in iron, for example- 
and so provide a nondestructive method 
of determining lattice distortions, or 
strains, throughout relatively large engi- 
neered components. Because the distor- 

Liis Alamos Science Summer 1990 



Sludge Physics 

(a) Neutron-Diffraction Data 

MEASURING STRAIN WITH 
NEUTRON DIFFRACTION 

Fig. 14. Neutron diffraction can determine 

the strain in  a polycrystalline material by 

measuring the stress-induced changes in the 

lattice spacings of crystallites, that is, in the 
spacings between sets of parallel planes of 

atoms. (a) Shown here is the experimental 

setup for measuring the strain in a copper bar 

stretched along its length. The bar is oriented 

at 45 degrees relative to the incident neutron 

beam and neutrons diffracted through 590 

degrees are detected. As shown in the blowup 

of the gauge volume (the volume in which 

lattice spacings are measured), this setup 

implies that the Bragg peak from a certain set 

of planes parallel and perpendicular to the 

applied stress are recorded in the -90 degrees 

and the +90 degrees detectors respectively. 

The lattice spacings d between those planes 

are related to the wavelength, and hence time 

of flight, of the neutrons that make up the 

Bragg peak. (b) Applied stress along the 

copper bar is expected to increase the lattice 

spacing between planes perpendicular to the 

applied stress and decrease the lattice spacing 

between planes parallel to the applied stress. 

Here d y  is the lattice spacing of the (hkl) 

planes in three variously oriented crystallites 

of an unstrained bar, and dhkl is the lattice 

spacing of the same set of planes after the 

sample has been strained. The indices (hkl), 

called Miller indices, uniquely identify the set 

of lattice planes being measured. 

tions occur on the scale of interatomic 
distances-that is, on a much smaller 
scale than the 100 to 1000 angstroms 
covered by small-angle neutron scat- 
tering and neutron reflectometry-and 
because the materials of interest are 
polycrystalline, powder diffraction is 
the technique of choice. 

Figure 14a shows the arrangement 
for measuring strains in a stressed cop- 
per bar with a neutron powder diffrac- 

Bragg Peak from Bar , Bragg Peak from Unstrained Bar 
Stretched by 1 Percent 

(b) Strain-Induced Changes in Lattice Spacing 

MEASUREMENT OF STRAIN IN A STRETCHED COPPER BAR 

Fig. 15. To determine the microscopic elastic strains in a copper bar stretched by 1 percent, 

Set of 1 ~a t t i ; ;~~es 

researchers compare the Bragg peaks for a certain set of planes before and after applying stress. 

(a) The position of the Bragg peak for the (111) planes shifts by an amount corresponding to 

a change in the (111) lattice spacing of 0.00248(6) angstroms. (The number in parentheses is 

the uncertainty in the last digit@).) (b) The table summarizes the percentage change in lattice 

spacing, or ( d  - do)/do, for four sets of planes. The change is positive when the sets of planes 

are perpendicular to the applied stress and negative when the sets of planes are parallel to 

the applied stress, as expected. Note that the percentage changes in the lattice spacings of 

parallel sets of planes, the (111) and (222) planes, are equal within the experimental error, as 

they should be. Sets of planes that are not parallel to each other show different strains because 

copper is elastically anisotropic. The strain measurements were made on the Neutron Powder 

Diffractometer at LANSCE. 

tometer. The intersection of the incident 
and detected neutron beams defines the 
so-called gauge volume, the volume of 
material within which the average inter- 
planar spacings are measured. By using 
suitable neutron-absorbing masks the 
gauge volume can be varied. A large 
gauge volume yields a high neutron 
count rate and thus high accuracy in 
the measurements, but it also yields an 
average value of the strain over that 

(d- do) /do 

for Planes -L to Stress 

volume, an average that will not rc- 
fleet the true strain in regions of steeply 
changing stress. Typically, gauge vol- 
umes of a few tens of cubic millimeters 
provide a reasonable compromise be- 
tween those two factors. 

The intersection of the incident and 
detected beams also determines the di- 
rection in which strain is measured. For 
example, as shown Fig. 14a, the detec- 
tors at +90 degrees and -90 degrees 

(d- do) /do 

for Planes 11 to Stress 
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measure scattering from planes at +45 
degrees and -45 degrees. If the bar is 
oriented as in Fig. 14, these directions 
correspond to lattice spacings parallel 
and perpendicular to the stress applied 
along the length of the bar. Because 
the copper bar is polycrystalline, there 
are crystallites in which a given set of 
lattice planes is oriented parallel to the 
applied stress and others in which the 
same set of planes is oriented perpendic- 
ular to the stress. In general, one would 
expect the lattice spacings to increase in 
a direction parallel to the applied load 
and to decrease in the perpendicular 
direction. Figure 15a shows a Bragg 
peak shift resulting from stretching the 
copper bar by 1 percent, and Fig. 15b 
lists the changes in lattice spacing for 
several sets of lattice planes. As ex- 
pected, the lattice spacings parallel 
to the stress increase while the lattice 
spacings perpendicular to the stress de- 
crease. The change in lattice spacing- 
0.1 percent- is much less than the 
macroscopic change because the bar 
has been plastically deformed. Neutron 
scattering measures only elastic strain, 
which is much smaller. These experi- 
ments were performed on the LANSCE 
Neutron Powder Diffractometer, which 
can measure lattice spacings with an 
accuracy of 1 pan in 100,000 or better. 

On a powder diffractometer at a re- 
actor source it is usual (although not 
mandatory) to work with fixed neu- 
tron wavelength and to record differ- 
ent Bragg peaks by changing the po- 
sition of the detector (see "Neutron 
Scattering-A Primer"). However, the 
gauge volume changes shape slightly as 
the detector position is changed, and 
correcting for such effects is not al- 
ways easy, especially in cases where 
strain varies rapidly with position in 
the specimen. At a pulsed spallation 
source, on the other hand, researchers 
work with neutrons of many differ- 
ent wavelengths simultaneously and 
record several Bragg peaks in a sin- 

I 1 inch 

PREFERRED CRYSTALLITE ORIENTATION IN A TURBINE BLADE 

Fig. 16. Bragg peaks measured at +I53 degrees and -153 degrees from the incident beam of the 
High-Intensity Powder Diffractometer at LANSCE indicate a high degree of preferred crystallite 
orientation in the mounting end of a jet-engine turbine blade. If the crystalline grains were 
oriented randomly in the blade, the intensities of the corresponding peaks in the two patterns 
would be identical because equal numbers of grains would contribute to each pattern. Neutron 
scattering provides a simple method of checking preferred crystallite orientation. 
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gle detector. Because the scattering an- 
gle is constant during a measurement, 
the shape and size of the gauge vol- 
ume are also constant. Furthermore, 
the simultaneous measurement of sev- 
eral Bragg peaks from parallel sets of 
atomic planes-for example, the (1 1 1) 
and (222) planes in Fig. 14Ã‘mus cor- 
respond to the same microscopic strain 
if the measurement has been performed 
accurately. (The data in Fig. 14 clearly 
satisfy this consistency check.) Once 
this check has been made it is easier to 
be confident that the strains measured 
for nonparallel planes-for example, the 
(I 1 1) and (200) planes-are actually 
different, and that this difference is due 
to elastic anisotropy of the sample rather 
than an experimental mistake. 

The Neutron Powder Diffractome- 
ter at LANSCE uses several detectors 
positioned symmetrically about the in- 
cident beam direction, thus allowing 
researchers to measure strain in sev- 
eral directions simultaneously. Also, 
by measuring a Bragg peak from the 
same set of planes but at several dif- 
ferent scattering angles, researchers can 
determine whether the sample is tex- 
tured, that is, whether the individual 
crystallites that make up the specimen 
have a preferred orientation. The data in 
Fig. 16 reflects the preferred orientation 
of the crystalline grains in a jet-engine 
turbine blade. The same Bragg peaks 
measured on the High-Intensity Neu- 
tron Powder Diffractometer at +I53 and 
-153 degrees ought to have identical 
intensities if the crystallites in the sarn- 
pie are randomly oriented. Instead re- 
sults for the turbine blade show different 
intensities for each of the Bragg peaks. 
This occurs because turbine blades are 
deliberately fabricated so that all crys- 
talline grains have the same orienta- 
tion with respect to the length of blade. 
This direction is chosen to enhance the 
blade's strength and resistance to perma- 
nent deformation at high temperatures. 
From the variation of the intensity of 

the Bragg peaks with scattering angle, 
one can determine the degree of crystal- 
lite orientation. 

Until fairly recently experiments to 
determine residual stress by neutron 
scattering have been demonstrations 
only. For example, researchers have 
measured the stress distributions in 
thick-walled steel tubes, compared their 
results with those produced by more 
conventional methods of measurement, 
and found good agreement. In the past 
year or two, however, the technique has 
been "used in anger" for a number of 
measurements, including residual stress 
resulting from the deformation of welds, 
residual stress in railway lines, and 
residual-stress fields at the tips of prop- 
agating cracks. Future plans for work at 
LANSCE include measurement of resid- 
ual stress in ceramics and composites, 
studies of stresses close to shot-peened 
and bearing surfaces, investigations of 
metals formed by compressing powders, 
and measurements of strain distributions 
around welds that have been vibrated 
during the welding process. The appli- 
cation of neutron diffraction to the de- 
termination of residual stress is a tech- 
nique in its infancy and one that holds 
great promise for the future. 
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NEUTRONS & CATALYSIS 
by Juergen Eckert and Phillip J. Vergamini 

atalysis-the ability of some 
substances to alter the rate of 
chemical reactions without 
being consumed-was rec- 

ognized more than 150 years ago and 
has been applied on an industrial scale 
since the beginning of this century. 
Modem industrial chemistry, especially 
petroleum processing and the manufac- 

ture of chemicals, could not function 
without catalysts. It has been estimated, 
for example, that catalysts are involved 
at some point in the production of 60 to 
70 percent of all industrial chemicals. 
Yet the store of knowledge about how 
catalysts work is surprisingly small. The 
search for a catalyst for a particular re- 
action, or for ways to improve existing 

catalysts, is still, as it always has been, 
largely empirical. 

In the last few years, however, so- 
phisticated new analytical and compu- 
tational techniques have helped stimu- 
late a renaissance in catalysis research. 
Powerful economic forces have mo- 
tivated the study of catalysis as well: 
the need for new sources of energy and 
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chemicals, changes in the availability 
of raw materials, potential restrictions 
on the availability of noble-metal cat- 
alysts, and the desire for new products 
have pointed up the need for a clearer 
understanding of catalytic processes. 

Much of the research into cataly- 
sis is directed toward metals, because 
they catalyze many important reac- 
tions. Metals may be catalytically ac- 
tive in the form of finely divided parti- 
cles, organometal lic compounds in so- 
lution, or ions bound to large biologi- 
cally active molecules, such as enzymes. 
The catalysis may be heterogeneous in 
the sense of involving more than one 
phase (solid metal and gaseous reac- 
tants, for example) or i t  may be homo- 
,qeneous in the sense of involving only 
one phase (such as a solution). What- 
ever the form, when the metal binds to 
a reactant molecule, it almost always 
alters the chemical bonding i n  the re- 
actant. If that alteration is favorable to 
some particular reaction, then the metal 
is a catalyst for that reaction. 

To understand catalytic activity, or 
to tailor a catalyst to do a specific job, 
we need to know the individual steps in 
the catalytic process in great detail. For 
example, consider the hydrogenation of 
ethylene to ethane, 

which can serve as a prototype of re- 
actions used in producing synthetic fu- 
els. The production of synthetic fuel 
from coal, for example, involves various 
series of reactions, including the step- 
wise hydrogenation of carbon to form 
acetylene (HCCH), ethylene, and ethane, 
as well as the stepwise hydrogenation 
of carbon chains with more than two 
carbon atoms. The hydrogenation of 
ethylene shown above is a particularly 
useful reaction to study because i t  can 
be carried out at moderate temperatures 
in the presence of a metal catalyst. The 
various steps to the reaction are repre- 

sented schematically in Fig. 1 ,  and a 
full understanding of the hydrogena- 
tion process requires knowing many 
details about each step. Knowledge of 
the spatial relationships of the adsorbed 
species and the metal atoms at the cat- 
alyst surface may enable us to identify 
reactive sites on the surface. Determi- 
nation of the changes in bond angles 

Adsorption on Catalyst Surface 

Activation of Chemical Bonds 

Dissociation of Hn Change of C=C to C-C 

Diffusion on Catalyst Surface 

Formation of Reaction Intermediate(s) 

H 3C-CH3 

HYDROGENATION OF ETHYLENE 

Fig. 1. The catalytic hydrogenation of ethylene 

to ethane involves various steps, all of which 

need to be examined in detail if we are to fully 

understand the reaction. Neutron scattering 

experiments can help provide some of the 

necessary detail. 

and distances of the reactant molecules 
when they are adsorbed should make 
it possible to understand theoretically 
the changes in electronic structure that 
occur when the reactants are activated. 
Because the adsorbed species must dif- 
fuse on the surface to react and form 
new molecules, we need to know how 
this occurs. (We might wonder, for ex- 
ample, whether the adsorbed hydrogen 
diffuses only over the surface of the 
metal or also into its interior.) Finally, 
identification of reaction intermediates 
is crucial to understanding the entire 
process. 

Unfortunately, these details of struc- 
ture and dynamics cannot easily be de- 
termined i n  a "real-world" situation- 
that is, during an actual catalytic reac- 
tion. Catalytic processes usually pro- 
ceed under conditions that preclude the 
direct application of many powerful an- 
alytical techniques-or at least make 
such application very difficult. Consid- 
erable effort has therefore been devoted 
to the study of so-called model systems, 
which are designed to reproduce the 
critical relationships as accurately as 
possible. One useful model system is 
a single crystal of a metal for which 
the surface arrangement of atoms is 
known. Others that have been widely 
used are synthetic molecules consisting 
of a metal atom (or a cluster of metal 
atoms) surrounded by stabilizing lig- 
ands, usually carbonyl groups (CO) or 
other more complex organic groups. 
When a reactant molecule such as ethy- 
lene or benzene binds to such a syn- 
thetic molecule, we can assume that, to 
some degree, the configuration of the 
resulting complex resembles that of the 
same reactant adsorbed on a metal sur- 
face. The complex can be studied with 
several spectroscopic techniques, and its 
crystalline form can be characterized by 
x-ray and neutron diffraction, which re- 
veal details of its architecture with great 
accuracy. 

The more closely the properties of the 
model system approximate the proper- 
ties of the real-world system, of course, 
the better. As a result, model systems 
are often structurally modified to refine 
their properties and bring them closer in 
line with the more complex system of 
interest. However, such modifications 
can complicate the structural character- 
ization of the model system. For exam- 
ple, as the model system becomes larger 
and more complex, the chances increase 
that some portions of the molecule will 
be disordered or less easily defined. The 
necessity of modeling the disorder can 
decrease the precision of the results for 
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the metal-hydrogen interaction, which 
is the feature of most interest. In effect, 
the results become slightly fuzzy and 
less precise. 

Besides being useful in the study of 
catalysis, metal complexes are highly 
suitable for theoretical studies of chemi- 
cal bonding between the bound molecule 
(ligand) and the metal atoms. They 
are therefore of fundamental interest 
to researchers studying chemical bonds 
from first principles. Finally, metal- 
cluster complexes can stabilize cer- 
tain molecules that are unstable in pure 
form. For example, cyclobutadiene can 
be stabilized by binding to iron car- 
bonyl, Fe(CO)3; and ethylidyne, CH3-C 
(a highly reactive intermediate formed 
in the hydrogenation of ethylene), can 
be isolated by reacting with cobalt car- 
bonyl to form the metal-cluster complex 
CH3C-Co3 (CO)9. 

The kind of information available 
through the study of model compounds 
is illustrated by the case of the clus- 
ter compound HFeCo3(CO) 12. Diffrac- 
tion studies show that the single hydro- 
gen atom is located at a site of three- 
fold symmetry, that is, just outside 
the triangle formed by the three cobalt 
atoms (Fig. 2). The vibrational spec- 
trum of hydrogen in this compound is 
very similar to that of hydrogen atoms 
chemisorbed on a nickel or a platinum 
surface. Since the vibrational spectrum 
of a molecule or atom strongly reflects 
the way in which it is bound to other 
atoms, the similarity here allows the 
inference that hydrogen chemisorbed 
on a catalyst surface is located at a site 
of threefold symmetry. We can further 
infer that the catalytically active sur- 
face is the so-called (1 11) plane of the 
metal, because that is the only crystal 
plane having threefold symmetry. This 
information could not have been easily 
obtained in any direct way. 

How does one then study the model 
systems? There are many experimen- 
tal techniques, each especially suited 

for a particular aspect of the problem, 
and neutron scattering is one of these. 
However, even the most intense neu- 
tron sources produce fluxes far below 
those commonly available from sources 
of photons (x rays, ultraviolet, visible 
light, and infrared), and so neutron 
scattering is not one of the principal 
tools of surface science. Nevertheless, 
when the systems include hydrogen 

A CLUSTER COMPOUND 

Fig. 2. The H F ~ C O ~ ( C O ) ~ ~  complex, which 

contains a single hydrogen atom (blue) 

located against an equilateral triangle of 

cobalt atoms (red), can serve as a model 

system for hydrogen atoms chemisorbed on 

a metal surface. In particular, comparison of 

vibrational spectra can help establish whether 

or not the hydrogen on the metal surface is 

also located at sites with threefold symmetry. 

(Adapted from a figure in an article by R. G. 
Teller, R. D. Wilson, R. K. McMullan, T. F. 

Koetzle, and R. Bau. Journal of the American 

Chemical Society 1 00: 3071, 1 978.) 

or molecules containing hydrogen-as 
do the more important types of com- 
pounds involved in industrial catalytic 
processes-neutron scattering is ex- 
tremely useful. 

The singular utility of neutron scatter- 

ing is in locating the all-important hy- 
drogen atoms and highlighting the vibra- 
tional and rotational motions associated 
with them. This strength is a result of 
the fact that neutrons scatter as strongly 
from hydrogen as from most other el- 
ements (see "Neutron Scattering-A 
Primer" by Roger Pynn). Although it 
is nearly impossible to "see" hydrogen 
atoms in the presence of heavy met- 
als using x rays, x-ray diffraction can 
sometimes implicitly locate hydrogen 
atoms bound to or interacting with metal 
atoms. If a site in a metal complex is 
usually filled, an apparent vacancy at 
that site, together with other physical 
and chemical evidence, can lead to the 
inference that hydrogen occupies the po- 
sition. Neutron scattering, however, is 
needed to confirm the actual presence of 
hydrogen. Thus, the structures of com- 
pounds of interest are typically deter- 
mined by first applying x-ray diffrac- 
tion to locate the heavier atoms and 
then neutron diffraction to obtain pre- 
cise metal-hydrogen distances and bond 
angles. 

Historically, single-crystal neutron 
diffraction has been more difficult than 
x-ray diffraction. Neutrons can travel 
large distances through material without 
being scattered, so neutron diffraction 

I requires a much larger crystal. This 
problem has been partly alleviated by 
the availability of more intense sources 
of neutrons. Furthermore, the time-of- 
flight wavelength measurements possi- 
ble at pulsed-accelerator-based neutron 
sources makes all neutrons in each pulse 
usable. Area detectors make it possi- 
ble to collect large volumes of data at 
one time and make feasible full struc- 
tural determination from polycrystalline 
material. 

For the observation of molecular vi- 
brations, optical techniques (infrared 
absorption and Raman scattering) are , far more common and much easier to 
use than neutron scattering. Once again, 
however, the difference in the nature of 
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the interaction between the scatterer and 
the probe makes neutron-scattering vi- 
brational spectroscopy advantageous in 
certain cases. First, absorption of pho- 
tons in optical spectroscopy depends on 
the symmetry properties of the vibra- 
tional mode being excited in the sample, 
whereas no such symmetry-based se- 
lection rules apply to inelastic neutron 
scattering. (We use inelastic to refer to 
the fact that the neutron loses or gains 
energy during the scattering process. 
The change in energy corresponds to a 
change in the vibrational energy of the 
scattering molecule.) Hence, in principle 
(though not necessarily in fact), all vi- 
brations of a molecule can be observed 
by inelastic neutron scattering. 

The factors determining the intensity 
of a given excitation are a second, and 
perhaps more important, difference be- 
tween neutron-scattering and optical vi- 
brational spectroscopy. Large-amplitude 
vibrations by nuclei with high neutron- 
scattering cross sections (such as hydro- 
gen) typically give rise to intense inelas- 
tic neutron-scattering bands; whole-body 
librations of molecules are typical ex- 
amples. Such motions, however, usually 
involve only small changes (if any) in 
the polarizability or the dipole moment 
of the molecule, which are the factors 
that govern intensities in Raman scat- 
tering and infrared absorption. Thus, 
optical and neutron-scattering methods 
are remarkably complementary. 

The utility of inelastic neutron scatter- 
ing can be greatly enhanced by replac- 
ing certain atoms, whose vibrations are 
to be highlighted, with isotopes of dif- 
ferent neutron-scattering cross sections. 
Such isotopic substitution is particularly 
valuable for studying hydrogen, because 
the neutron-scattering cross sections ap- 
propriate to inelastic neutron scattering 
for hydrogen and deuterium differ by 
more than an order of magnitude. For 
example, to distinguish the motions of 
the methyl group in toluene (C6H5CH3, 
a benzene derivative in which one of 

the ring hydrogens is replaced by a 
methyl group), the remaining ring hy- 
drogens can be replaced by deuterium 
atoms. Then, as far as neutron scatter- 
ing is concerned, the deuterium atoms 
are much less "visible" than the three 
hydrogen atoms on the methyl group. 
(In optical spectroscopy, isotopic substi- 
tution alters the frequency of vibration 
but leaves the intensity of absorbed or 
scattered photons virtually unchanged.) 
Another application of isotopic substi- 
tution in neutron scattering involves the 
differential spectra of isotopic species, 
examples of which will be described in 
the following sections. 

We have chosen to describe three ex- 
amples of neutron-scattering studies on 
metal complexes, each of which may 
serve as a model system for a particu- 
lar step in the hydrogenation reaction 
shown in Fig. 1. The first example is 
a hydride ligand in an octahedral clus- 
ter of metal atoms, a model system that 
may help us understand the motion of 
hydrogen atoms between the surface and 
the region just below the surface (once 
the Hi molecule has dissociated on the 
surface). The other two examples-an 
ethylene-diosmium complex and a set 
of molecular-hydrogen complexes- 
may be regarded as models for the bond 
activation that precedes the actual re- 
action on the surface. The complexes 
that bind molecular hydrogen are par- 
ticularly important in this context be- 
cause they represent a "capture" of the 
long-sought intermediate in perhaps the 
most fundamental reaction, the disso- 
ciation of hydrogen molecules. As we 
shall show below, elastic and inelas- 
tic neutron-scattering studies of these 
compounds have provided remarkably 
detailed information on the nature of 
the chemical bond between the dihydro- 
gen, or molecular hydrogen, ligand and 
the metal center, including evidence for 
back-donation of electron density from 
the metal to the antibonding orbital of 
the hydrogen molecule. 

The Hydride Ligand 

The first example we want to dis- 
cuss in detail is the interstitial hydride 
ligand-a single hydrogen atom bound 
to a metal atom or atoms. Hydride lig- 
ands are usually formed on metal sur- 
faces when molecular hydrogen disso- 
ciates and are referred to as terminal, 
doubly bridging, triply bridging, and 
so forth, depending on whether they 
are bonded to one, two, three, or more 
metal atoms. 

In large cluster complexes with many 
metal atoms, hydride ligands may also 
occupy interior, or interstitial, sites. 
Among the large metal-cluster com- 
pounds of this type that have been syn- 
thesized, two-the octahedral clusters 
of cobalt and ruthenium-stand out for 
their remarkable simplicity. Both these 
compounds have a cluster of six metal 
atoms that form the octahedral site, a 
single hydride ligand, and several car- 
bony1 groups outside the metal cluster 
that serve to stabilize the molecule. 

This kind of hydride coordination 
looks very much like that observed in 
bulk metals, where interstitial sites of 
octahedral or tetrahedral symmetry may 
be occupied by hydrogen. A hydrogen 
atom in a metal is of course surrounded 
by many more metal atoms than the 
six of a cluster compound. There are 
six atoms as nearest neighbors in an 
octahedral site, but further shells of 
metal atoms occur at ever increasing 
distances. However, if the hydrogen 
atom is located just below the surface 
of the metal, that is, between the first 
two layers of metal atoms, the number 
of more distant neighbors is minimized 
in one direction. The interstitial hydro- 
gen in the cluster may therefore be a 
better model for "subsurface" hydro- 
gen than for hydrogen within the bulk 
of the metal. Such a system may help 
answer a question raised earlier in the 
discussion of hydrogenation-that is, 
where the hydrogen is likely to move, 
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(a) The [HCo6 (CO),c]' Anion (b) The Central Octahedron 

Internal 

I? 
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AN OCTAHEDRAL CLUSTER 

Fig. 3. (a) The location of the hydride ligand in the anion [ H C O ~ ( C O ) ~ ~ ]  has been determined with considerable certainty by neutron diffraction 

from a single crystal containing the cation [ (P~~P)~N]* .  The hydride ligand (blue) is located at the center of an octahedron of cobalt atoms (red); 

the cobalt atoms, in turn, are surrounded by twelve carbonyl ligands (green and yellow). The shapes at each atomic position are thermal ellipsoids, 

which indicate the extent and direction of the thermal motion of the atoms about their equilibrium positions. (The surface of each ellipsoid defines 

the volume in which the atom is contained 50 percent of the time.) (b) There are a number of alternative sites close to the central octahedron of 

cobalt atoms that may, in some compounds, serve as the location of the hydride ligand (two possibilities are shown in light blue). The alternative 

sites are either external or internal to the octahedron of cobalt atoms, and the hydrogen atom can be doubly or triply bridged to those atoms. 

However, such sites have considerably less symmetry than the central octahedral site, and the vibrational spectra of hydrogen when located at 

such a site would be quite different from the single excitation that is actually observed in the spectrum of [ H C O ~ ( C O ) ~ ~ ] .  (Adapted from a figure 

in an article by D. W. Hart, R. G. Teller, C.-Y. Wei, R. Bau, G. Longoni, S. Campanella, P. Chini, and T. F. Koetzle. Journal of the American Chemical 

Society 103: 1458, 1981 .) 

after dissociation, relative to the metal 
catalyst's surface. 

The first step, however, in under- 
standing the microscopic properties of 
hydrogen in a metal cluster is to attempt 
to locate it by diffraction studies. The 
only reliable way to do this is by use 
of neutron beams, for the reasons dis- 
cussed earlier. Because hydrogen is a 
minor component of the rather large 
metal-cluster molecules, single crystals 
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must be used for the diffraction stud- 
ies. Also, cluster compounds are most 
commonly ionic species, and a suit- 
able counter ion-a large, oppositely 
charged ion-must be added to pro- 
duce sufficiently large single crystals. In 
the present case, the complex of inter- 
est is [HCO~(CO)~~]- ,  and the counter 
ion used to produce the single crystal is 
[(Ph3P)2N]+, in which Ph is the phenyl 
group, C6H5. 

A neutron-diffraction study of a sin- 
gle crystal of [(Ph3P)2N] [HCO~(CO)~~] ,  
carried out on the high-flux-beam reac- 
tor at Brookhaven National Laboratory, 
showed quite convincingly that the hy- 
drogen is located approximately at the 
center of a somewhat irregular octa- 
hedron of cobalt atoms (Fig. 3) even 
though other locations, such as three- 
fold coordination inside or outside one 
of the triangular faces of the octahedron, 
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are possible. The vibrational spectrum 
of hydrogen in a regular octahedral site 
would show a single excitation, a triply 
degenerate hydrogen-metal stretching 
mode. If, however, the hydrogen were 
to also move significantly off center, 
additional peaks would appear in the 
vibrational spectrum. It is in just such 
cases that vibrational spectra are of 
great value in obtaining structural infor- 
mation. An inelastic neutron-scattering 
study of the cesium salt of the same 
cobalt cluster showed primarily a single 
excitation at a frequency of 1056 recip- 
rocal centimeters ( c m l ) ,  confirming the 
central location of the hydride ligand in 
the octahedral site. 

Prompted by the results of some in- 
frared spectroscopic studies that showed 
interesting changes in the spectra of the 
[ H C O ~ ( C O ) ~ ~ ]  cluster as the crystalline 
environment was altered, we recently 
investigated the vibrational spectrum 
of the cluster combined with the very 
much smaller counter ion K+. The data, 
shown in Fig. 4, were obtained by the 
differential technique on the Filter Dif- 
ference Spectrometer at the Manuel 
Lujan, Jr. Neutron Scattering Center 
(LANSCE) at Los Alamos. Two sam- 
ples were measured, one with hydrogen 
and one with deuterium as the ligand. 
Because the scattering cross section for 
deuterium is much smaller than that for 
hydrogen, the vibrational spectrum of 
the deuterated compound serves essen- 
tially as a "blank" to be subtracted from 
that of the protonated compound. The 
resulting differential spectrum is free of 
all the many vibrational modes of this 
large molecule that do not involve mo- 
tion of the hydrogen and thus highlights 
the vibrational modes that do involve 
hydrogen. 

The features shown in the differential 
spectrum can be immediately identified 
with hydrogen vibrations and suggest 
that all the hydrogen atoms are by no 
means located at the center of the oc- 
tahedron of cobalt atoms. The broad 

Alternative Site, 
Symmetric Interstitial Site, 
Stretch (?) 1 Symmetric Stretch 

Alternative Site, A* 
Â . 

K[HCoe (CO)151 
. 

I I I I 
800 1000 1200 1400 

Energy Transfer (cm") 

VIBRATIONAL SPECTRUM OF 
THEOCTAHEDRALCLUSTER 

Fig. 4. The differential spectrum shown here 
for the [ H C O ~ ( C O ) ~ ~ ]  cluster (Fig. 3 )~on ly  
crystallized with the much smaller counter 
ion K-includes only those vibrations that 
involve the hydride ligand. The broad peak 
just below 1100 c m l  has been identified as 
the symmetric stretching vibration of hydro- 
gen located at the center of the interstitial 
octahedral site; this peak appears in vari- 
ous spectra regardless of which counter ion 
is present. The second peak at about 950 

-1 cm is not present in the spectra of crystals 
containing c s  as a counter ion and may be 
the stretching vibration of doubly or triply 
bridged hydrogen located at an alternative 
site (such as those shown in light blue in 
Fig. 3b). If the latter assignment is correct, 
the high-frequency shoulder just above 1100 

-1 cm would correspond to the asymmetric 
stretching vibration of hydrogen at a triply 
bridged site. These data were obtained by 
using the Filter Difference Spectrometer at 
LANSCE. 

band in the region between 1050 and 
1100 c m l  may certainly be assigned 
to the stretching vibration of hydrogen 
at the interstitial site, but the band at 
950 c m l  must then be indicative of 
hydrogen at a different site-one bridg- 
ing either two or three cobalt atoms. In 

either case, a second vibrational line at 
higher frequency would be expected. 
The data are not conclusive in this re- 
spect, but if the band at 950 c m l  is the 
symmetric stretching vibration for the 
doubly or triply bridged hydrogen, then 
the high-frequency shoulder just above 
1100 c m l  has about the expected fre- 
quency for the asymmetric stretch of 
triply bridged hydrogen. 

The spectrum thus appears to reveal 
an instance of thefluxionality of the 
hydride ligands in cluster compounds. 
Fluxionality-commonly detected in 
nuclear-magnetic-resonance studies- 
refers to the movement of hydrogen 
from one site to another. Because the 
movement occurs on a time scale that is 
many orders of magnitude greater than 
the time scale of a typical vibration, 
the hydrogen can be "caught" vibrating 
rapidly at more than one site. However, 
if the binding energy is much larger at 
one site than at others, such fluxionality 
is unlikely. 

In any case, the remarkable result of 
our studies is that the position of the 
hydride ligand in these metal clusters 
apparently depends on the nature of the 
counter ion used to crystallize the com- 
pound. This fact suggests that the bind- 
ing strengths for hydrogen at the vari- 
ous sites differ by only small amounts 
and may, in fact, be affected by the 
charge balance between the complex 
ion and its counter ion. Such a conjec- 
ture is needed to explain the observed 
change in fluxionality of the hydrogen 
atom in the cluster. Moreover, the con- 
jecture is in agreement with nuclear- 
magnetic-resonance observations of the 
[HCo6(CO)l5] ion in solution, which 
show that the hydrogen can easily leave 
the octahedron and exchange with pro- 
tons of the solvent molecules. 

The factors that govern fluxionality of 
the hydride ligand in cluster compounds 
may, of course, differ considerably from 
those that determine the diffusion of hy- 
drogen between the metal surface and, 

Los Alamos Science Summer 1990 



Neutrons and Catalysis 

(a) Ethylene 

a Electrons 

Molecular 

a Electrons ------J 

(b) Ethane 

GEOMETRY OF ETHANE AND ETHYLENE 

Fig. 5. (a) All the atoms of ethylene lie in a single plane, and almost all of its electron orbitals 
are concentrated close to that plane. The exception is the double bond between the two carbon 
atoms, which includes two -n- electrons in an orbital that juts above and below the plane, as well 
as two a electrons in the central bonding orbital in the plane. (b) The atoms of ethane, on the 
other hand, are arranged in two overlapping tetrahedral groups that surround each carbon atom 
(one tetrahedron is outlined in red), and it has a single u bond between the carbon atoms. This 
arrangement allows the two CH3 groups to rotate with respect to one another. 

for example, the subsurface layer. If 
one wishes to hydrogenate, say, ethy- 
lene on a metal surface, it is important 
to know that the hydrogen atoms will 
stay on the surface long enough after 
dissociation to react with the ethylene 
rather than diffuse rapidly into the bulk 
metal. Despite the above caveats, the 
detailed structural picture, and i n  some 
cases the detailed dynamical picture of 
hydride motion, that can be obtained 
from model cluster systems is quite im- 
portant for understanding the diffusion 
of hydrogen along a metal surface or 
between the surface and the bulk. 

The Ethylene-Metal Complex 

We now focus on another question 
in the hydrogenation reaction, namely 
the formation of a complex between 
ethylene and the metal and the result- 
ing bond activation that is necessary for 
ethylene to take up hydrogen. Hydro- 
genation changes the ethylene molecule 
from an arrangement in which all the 
atoms are coplanar and the carbon- 
carbon bond is a short double bond that 
includes ~r-bonding electrons (Fig. 5) 
to an ethane molecule in which the 
atoms are grouped tetrahedrally and the 
carbon-carbon bond is the longer sin- 
gle bond based solely on a electrons. 
Here again, we shall examine a model 
compound in which the precise arrange- 
ment of the ethylene molecule and the 
metal atoms can be studied by neutron 
diffraction. 

Ethylene molecules can interact with 
a metal surface in several ways. Per- 
haps the most common configuration is 
the so-called side-on TT complex shown 
in Fig. 6a, in which the planar ethy- 
lene molecule is parallel to the surface 
of the metal and the TT electrons in the 
carbon-carbon double bond interact di- 
rectly with the electrons on a single 
metal atom. A second species, the di-u- 
bonded complex (Fig. 6b), has also been 
observed; in this case the double bond 
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between the carbon atoms is reduced to 
a single bond and a further a bond is 
formed between each carbon atom and 
one of two adjacent metal atoms. Ob- 
viously, this last complex could be an 
intermediate species in the hydrogena- 
tion reaction. 

The O S ~ ( C O ) ~ ( C ~ H ~ )  complex (Fig. 7) 
does in fact have an ethylene ligand 
that shows the di-a binding geome- 
try. Further, the vibrational spectrum 
of this complex is very similar to that 
of ethylene chemisorbed on platinum 
at temperatures below 100 kelvins, and 
the complex can serve as a model for 
that system. X-ray diffraction studies 
of OS~(CO)~(C~&) show both that the 
carbon-carbon distance is longer than a 
normal ethylene double bond and that 
the four-membered ring formed by the 
two osmiums and two carbons is twisted 
and nonplanar. This last observation 
implies that the hydrogens have proba- 
bly also twisted out of their plane with 
the carbons. However, as we already 
pointed out, it is very difficult to di- 
rectly determine the positions of the 
hydrogen atoms with x rays. Spectro- 
scopic evidence also suggests unusual 
structural features within the bridging 
ethylene ligand. This evidence may or 
may not be consistent with the x-ray 
observations but cannot be interpreted 
in an unambiguous way. Therefore, a 
knowledge of the detailed structure, par- 
ticularly the positions of the hydrogen 
atoms, is necessary to resolve questions 
regarding the bonding in this compound. 

Neutron-scattering measurements 
show that two hydrogens, an osmo- 
nium atom, and the other carbon atom 
are arranged approximately tetrahedrally 
around each ethylene carbon atom. This 
observation is consistent with the elon- 
gation of the carbon-carbon bond, as 
well as with the spectroscopic evidence 
and theoretical calculations that allow 
for simple a bonding between each car- 
bon atom and an osmium atom. In this 
example, then, the bonding of ethylene 

(a) n-Bonded Ethylene 

Molecular , Plane \ 

0 Orbital .,/ 
M Metal Surface M 

(b) Di-0-Bonded Ethylene 

Tetrahedral 

M M M 
Metal Surface 

M- 

TWO KINDS OF ETHYLENE LIGANDS 

Fig. 6. Ethylene can form two distinctly different types of ligand bonds with metal atoms, (a) 
The =-bonded type involves the formation of a symmetric sigma-like bond between a single 
metal atom and a =-bond orbital of the ethylene molecule, a configuration in which the planar 
nature of the ethylene molecule is retained. (b) The di-u-bonded type involves the formation of 
two sigma-like bonds between the carbon atoms and two adjacent metal atoms. As a result, the 
carbon-carbon bond in the ethylene becomes a single u bond and the hydrogen atoms move out 
of the molecular plane and assume an approximate tetrahedral arrangement about the carbon 
atoms. 

to a metal-cluster compound results in mium carbonyl cluster. Simply replac- 
rearrangement of the bonding electrons ing the two osmium atoms with hydro- 
in the smaller molecule. gen atoms would produce the geometry 

The planar configuration of the ethy- found in ethane, the product of hydro- 
lene molecule is obviously drastically genation of ethylene. The twist ob- 
altered by its association with the os- served in the cluster-bonded ethylene 
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is tending toward the bond angles nor- 
mally found in ethane. 

In this example, the osmium cluster 
can be considered a model of either an 
isolated fragment of a metal surface (as 
in heterogeneous catalysis) or an indi- 
vidual catalytic molecule (as in homoge- 
neous catalysis). In either case, osmium 
is not necessarily unique in complexing 
with ethylene. Other metal atoms have 
different electrons at different energy 
levels, so the degree of activation and 
distortion may differ from one complex 
to another. However, all of them should 
have a tendency to activate ethylene 
to one degree or another by forming a 
complex of this kind. 

Binding of Molecular 
Hydrogen to a Metal 

In this final example we shall go back 
one step in the hydrogenation reaction 
and focus on the reaction of molecular 
hydrogen with a metal atom, the reac- 
tion that precedes its dissociation into 
hydrogen atoms. As mentioned ear- 
lier, most small molecules can bind 
chemically to complexes containing 
one or more metal atoms, often in ways 
that roughly resemble the chemisorbed 
state of the molecule. The coordinated 
molecule and the metal atom or atoms 
share electrons to some extent; as a re- 
sult, some bond angles or bond lengths 
in the bound molecule are changed. 
Molecular hydrogen has always been 
a notable exception; until recently it was 
found to bind only dissociatively, that 
is, as two individual hydrogen atoms. 
Observation of chemically bound molec- 
ular hydrogen would offer enormous 
potential for understanding on the basis 
of first principles the process that even- 
tually results in dissociative binding of 
hydrogen. 

A few years ago, G. J. Kubas and 
collaborators isolated the tungsten com- 
plex W(CO)3(PCy3)2H2 (where Cy is 
cyclohexyl, a 6-carbon alkane ring) that 

AN ETHYLENE-BRIDGED COMPLEX 

Fig. 7. An example of the di-u-bonded type 
of ethylene ligand (Fig. 6b) may be found 
in the osmium complex OS~(CO)~ (C~H~) .  
Not only has the carbon-carbon bond in the 
ethylene ligand lengthened, but the ligand has 
twisted, allowing the hydrogen atoms (blue) 
and the two osmium atoms (red) to assume a 
more tetrahedral grouping about each central 
carbon atom (green). 

may represent the long-sought interrne- 
diate in the oxidative addition of hy- 
drogen to a metal. Since then, many 
additional molecular-hydrogen com- 
plexes with central metal atoms other 
than tungsten and ligands other than 
tricyclohexylphosphine have been iden- 
tified. The hydrogen in these complexes 
is apparently reversibly bound to the 
metal, as can be demonstrated by pass- 
ing hydrogen gas into a solution of, for 
example, the precursor of the above 
tungsten-tricyclohexylphosphine com- 
plex at room temperature. The solution, 
which is originally purple, turns yellow, 
and light yellow crystals of the Hz com- 
plex can be precipitated from it. If the 
hydrogen stream is replaced by a chemi- 
cally inert gas such as argon, the purple 
color returns, implying the dissociation 
of H2 from the complex. An interest- 
ing feature of these compounds is that 
formation of a stable hydrogen complex 
apparently requires organophosphine 
ligands that are large and bulky. The 
structure of the purple precursor con- 
tains a clue to the role these ligands 

may play: the P-W-P axis is distorted 
and the organic portion of one phos- 
phine appears to fill the hole left by the 
absent molecule of hydrogen. 

Neutron-scattering techniques have 
played a decisive role in characterizing 
the dihydrogen ligand of the complexes 
in terms of both its structural and dy- 
namical properties. This information has 
then been used to work out a detailed 
quantitative picture of the bonding of 
the hydrogen molecule to the metal, as 
will be described in the following sec- 
tions. 

A Sigma-Bond Complex. In the early 
stages of the investigation of the com- 
plexes, it was absolutely essential to lo- 
cate the dihydrogen ligand and ascertain 
whether, in fact. it retained its molecu- 
lar identity. Although some initial evi- 
dence for the molecular-hydrogen bind- 
ing came from x-ray diffraction, conclu- 
sive evidence required the use of neu- 
tron diffraction because of its sensitivity 
to scattering from hydrogen. The first 
structure determined for a molecular- 
hydrogen complex is shown in Fig. 8. 
The complex is the same as the one 
we have been discussing except the 
tricyclohexylphosphine ligands (PCy3) 
have been replaced with less bulky tri- 
isopropylphosphine ligands (P(i-Pr)3, 
where i-Pr represents CH(CH3)2). Prob- 
ably the most important features of this 
structure are the two equal W-H dis- 
tances of 1.89 A and the increase in the 
H-H distance by some 10 percent over 
that in free H2 (0.82 A versus 0.74 A). 
These facts clearly suggest the forma- 
tion of a three-center metal-dihydrogen 
bond (that is, some of the electrons are 
shared between the metal atom and the 
two hydrogen nuclei) and a substantially 
weakened H-H bond. 

The dihydrogen ligand was also found 
to have a well-defined equilibrium ori- 
entation (Fig. 8c), one in which the 
H-H axis is parallel to the P-W-P axis 
of the complex. This fact might be ex- 
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A DIHYDROGEN COMPLEX (a) The W(COI3 (P(i  -Pr3)2 H2 Complex 
Tri-isopropylphosphine 

Ligand Fig. 8. (a) W(CO)3(P(i-Pr)3)2H2, the first 

molecular-hydrogen complex to have its 

structure determined, has two bulky tri- 

isopropylphosphine ligands (orange, blue, and 

green) located on opposite sides of a tungsten 

atom (red). The central region between 

the opposing phosphorus atoms (orange) 

contains three carbonyl ligands (green and 

yellow) and the molecular-hydrogen ligand 

(blue). The fact that the H-H bond length (0.82 

A) is longer than in free Hz (0.74 A) and the fact 

that the two W-H bond lengths are equal (1.89 

A) suggest a three-center metal-dihydrogen 

bond and a substantially weakened H-H bond. 

(b) The preferred orientation of the H2 ligand 

is parallel to P-W-P axis, suggesting that 

there is a barrier to rotation of the Hz ligand 

about the W-H2 axis. (c) A potential-energy 

curve for rotation of the H2 ligand in a plane 

perpendicular to the W-H2 axis with one 

degree of angular freedom (the angle 0) has 

minima for the identical orientations of 0 and 

180 degrees from the P-W-P axis. Because 

The Central Region 

(b) H2-Ligand Dynamics I 

I Librational Motion 
the ground-state wave functions (dashed 

lines) for each potential well overlap (shaded 

areas), there is tunneling between potential 

wells and, as a result, the energy levels split. 
I 

I 

W-H2 Axis '1 , 
plained on the basis of interactions be- 
tween the dihydrogen ligand and other 
ligands bound to the metal that would 
make alignment perpendicular to the 
P-W-P axis (and parallel to the OC- 
W-CO axis) energetically less favorable 
than alignment parallel to the P-W-P 
axis. We also observed that the hydro- 

(c) Potential-Energy Barrier to Rotation gen atoms of the bulky organophos- 
phines formed a pocket around the re- 
gion of the dihydrogen ligand, but the 

T Barrier Height 

Ground-State Energy Levels 

orientation of these organic groups is 
very accommodating and would not be 
expected to constrain the Hz molecule. 

Theoretical analysis is necessary to 
derive a more quantitative picture of the 
metal-ligand bonding than that indicated 
by the structural results. The most fun- 
damental types of calculations can, in 
fact, derive structural parameters such 
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as the H-H or W-H distances; com- 
parison with experimental values then 
serves as a check on the validity of the 
theory. The current problem, however, 
is sufficiently complex that structural 
information is used as input to simpli- 
fied theoretical models. Whether or not 
the theoretical model is derived from 
first principles or from a combination of 
structural data and a theoretical model, 
it is highly desirable to have other ex- 
perimental information on the nature of 
the chemical bonding that can be used 
to gauge the theoretical picture. 

The nature of the bonding between 
the dihydrogen ligand and the transition 
metal is of major significance because 
the complex represents the first exam- 
ple of a sigma-bond complex, that is, 
a complex in which the ligand binds 
through interaction of a metal center 
with a a-bonding electron pair. The- 
oretical studies of this three-center, 
two-electron bond indicate that both 
the bonding and antibonding orbitals of 
hydrogen (Fig. 9) may be involved. The 

Bonding Orbital 7 

Primary Bonding 7 

Metal Atom \^^ M 
Orbitals 

Backbonding 

BONDING OF 
MOLECULAR-HYDROGEN LIGAND 

Fig. 10. Although the main bonding between 

the dihydrogen ligand and the metal atom 

is due to an interaction between an empty 

metal-atom orbital and the u orbital in the 

hydrogen molecule (here shown in a cross- 

sectional view), there is evidence for some 

backbonding, which is an interaction between 

an antisymmetric metal-atom orbital and the 

hydrogen cr-antibonding orbital. Both of 

these interactions weaken the H-H bond 

and strengthen the M-H bond. The former 

interaction donates electron density from the 

u-bonding orbital of Hz to the metal atom, 

whereas the latter interaction puts electron 

density from the metal atom into the H2 

antibonding orbital. - Antibonding Orbital ' 

Fig. 9. The usual theoretical picture of 

H-H bonding has the two electrons in the 

hydrogen molecule occupying a low-energy 

0-bonding orbital whose electron-density 

map (here pictured schematically in a cross- 

sectional view) generally occupies the space 

between the two hydrogen nuclei. However, 

there is also a higher-energy u-antibonding 

orbital that is usually unoccupied and whose 

electron-density map has a node between the 

two hydrogen nuclei. (The plus and minus 

patterns in the antibonding orbital are there 

to indicate the antisymmetric nature of the 

orbital.) 

primary interaction between Hz and the 
metal atom is donation of electron den- 

MOLECULAR-HYDROGEN ORBITALS sity from the H-H 0 bond to an empty 
orbital in the metal atom (Fig. 10); how- 
ever, the same studies indicate that, to 
a lesser degree, backbonding between 
a metal orbital and the H2 antibonding 
sigma orbital (o*) also occurs. Back- 
bonding stabilizes the side-on orienta- 
tion shown in Figs. 8 and 10 rather than 
an end-on orientation (in which the H2 
molecule would have its bonding axis 
pointed straight at the tungsten atom 
with one hydrogen atom much closer 
to the metal atom than the other). The 
side-on coordination ultimately facili- 
tates cleavage of the H-H bond to give 
dihydride complexes in oxidative addi- 

tion reactions. These theoretical predic- 
tions, of course, require experimental 
confirmation. 

Rotational Dynamics. Hydrogen in 
the side-on coordination mode can un- 
dergo a remarkably wide variety of lig- 
and dynamics, including torsional os- 
cillations, or Vibrations, about its equi- 
librium orientation and much slower 
180-degree reorientations by tunnel- 
ing through the rotational barrier. Es- 
tablishing the presence of a significant 
electronic energy barrier to rotation 
would provide confirmation of metal- 
to-Hz backbonding. Such a barrier is 
too small to be observed by standard 
nuclear-magnetic-resonance techniques. 
Inelastic neutron scattering, however, 
is highly sensitive to hydrogen mo- 
tions because of the very large neutron- 
scattering cross section of protons and 
the typically large amplitude of the mo- 
tions. In fact, this technique is routinely 
used to study rapid rotational motion 
(for example, of methyl groups and of 
solid or liquid hydrogen or molecular 
hydrogen in zeolites). 

The nature of the rotational motion of 
the bound hydrogen molecule may be 
described with the aid of a diagram that 
shows the energy levels that the dihy- 
drogen ligand may occupy as a function 
of the height of the barrier hindering the 
rotation. These levels are the solutions 
to the Schrodinger equation chosen to 
represent the rotational motion of the 
bound hydrogen molecule. In particular, 
the equation includes only one angular 
degree of freedom because we assume 
that the relatively strong three-center 
metal-dihydrogen bond keeps the hydro- 
gen ligand essentially in a plane during 
its rotational motion. The complex may, 
in fact, be the first example of hydro- 
gen rotation with only one degree of 
rotational freedom, a situation first de- 
scribed by Pauling as an approximation 
for solid hydrogen. If any mixing with 
vibrational modes can also be neglected, 
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the Schrodinger equation for the rota- 
tional motion is 

= E*, (1) 

where B is the rotational constant (B = 
h2/21, where I is the moment of inertia 
of the molecule for the rotation in ques- 
tion), 4 is the angle of rotation about 
the 0-C-W-H2 axis, V2n represents the 
barrier-height potential energy for a po- 
tential with 2n minima, and * and E 
are, respectively, the wave function and 
energy of the allowed rotational states. 

In the present case, as we've already 
pointed out, crystal-structure studies 
as well as theoretical calculations have 
shown the dihydrogen ligand to have a 
well-defined orientation parallel to the 
P-W-P axis. The hydrogen molecule 
in this complex should then have two 
equivalent orientations located at po- 
tential minima that are 180 degrees 
apart (Fig. 8c), and we may assume 
that the term with n = 1 (a simple 
double-minimum potential) will dom- 
inate. Equation 1 can then be reduced 
to the Mathieu equation, for which 
solutions are tabulated. The resulting 
energy-level diagram as a function of 
barrier height V2 is shown in Fig. 11, 
in which both the energies and barrier 
heights are given in terms of B .  

The energy levels corresponding to 
V2 = 0 (left axis in Fig. 11) are those of 
a free rotor with one degree of freedom 
(Ej = BJ2, where J is the rotational 
quantum number, yielding levels at en- 
ergies of 0, B ,  45,  9 5 , .  . .). Introduc- 
tion of a barrier to this rotation (V2 > 0) 
changes the level spacing drastically and 
removes some degeneracies. In the limit 
of very high barriers (suggested by the 
arrows on the right side of Fig. 1 I), the 
states approach a set of equally spaced 
energy levels characteristic of essen- 
tially harmonic torsional oscillations. 

- . Transitions 

J =  0 I 1 

First Excited 
Librational State 

Torsional 
Transitions 

Ground 
Librational 

State 
/ 

/ Rotational-Tunnel 

10 15 

Barrier Height (WB) 

ROTATIONAL ENERGY-LEVEL DIAGRAM 

Fig. 11. A dumbbell molecule (such as hydrogen) constrained to rotate in a plane has one 

rotational degree of freedom and rotational states J = 0,1,2, 3, . . . at energies of 0, B, 4B,9B,. . . 
if there is no barrier to the rotation (that is, if V2 = 0). On the other hand, if V2 is very high (that 

is, beyond the right side of the figure), the molecule will occupy a set of equally spaced torsional 

oscillator levels. For intermediate barrier heights we find a series of split librational states. The 

observed transitions (indicated by arrows) are of two types: transitions within the librational 

ground state called rotational-tunnel transitions (in which A1 = &I) and transitions from the 

ground to the first excited librational state called torsional transitions. Because photons do not 

couple with nuclear moments, optical spectroscopy cannot be used to observe the tunneling 

transitions directly and can be used to observe only the torsional transitions between levels 

that have identical values of total nuclear spin (A1 = 0). The observed values for the transition 

energies are scaled by a value for B of 49.5 c m l  rather than the 60 c m l  value for free Hz to 

reflect the increased H-H bond length (0.82 A) relative to free Hz (0.74 A). The transitions shown 

are for a complex with a barrier height V2 equal to 15.7 B. 

The molecular hydrogen complexes 
being discussed here have intermediate 
barriers, and for these, we find a series 
of librational states, each of which is 
split relative to the torsional oscillator 
levels. This splitting arises from the fact 
that the barrier is not overly high, al- 
lowing the amplitude of the librations 
of the hydrogen molecule to be rela- 
tively large-large enough, in fact, for 
the wave functions that correspond to 
the molecule's being located in either 
of the two potential minima to overlap 

(Fig. 8c). To satisfy the Pauli principle, 
the degenerate states corresponding to 
these two orientations must split into 
two states, each with a slightly different 
energy (Fig. 11 inset). The splitting is 
called tunnel splitting because it is due 
to the overlap of wave functions through 
a potential barrier. The size of the split- 
ting decreases rapidly with increasing 
barrier height and is thus an extremely 
sensitive measure of barrier height. 

The two resulting states are charac- 
terized by their symmetry. For exam- 
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(a) W-PCy3 Complex (b) W-P(i-Pr)3 Complex 

Torsional 
Modes 

Frequency (cm"') 

1 Torsional Modes 

Frequency (cm") 

VIBRATIONAL-ROTATIONAL SPECTRA 

Fig. 12. The high-frequency transitions associated with torsional, or rotational, motion of 
the dihydrogen ligand have been identified for the two complexes (a) W(CO)3(PCy3)2H2 and 

(b) W(CO)3(P(i-Pr)3)2H2 by using the Filter Difference Spectrometer at LANSCE. Unrelated 
frequencies in the spectra were eliminated by taking the difference between the scattering 
spectrum for the complex with a dihydrogen ligand and that for the complex with a dideuterium 
ligand. The deformation modes include rocking and wagging of the dihydrogen ligand with 
respect to the complex. One piece of evidence that the assignments are correct is the fact that, 
for inelastic neutron scattering, the modes with the largest-amplitude motions of the hydrogen 
atoms have the highest intensity and the rotational modes involve more motion of the hydrogen 
atoms than the rocking modes. 

pie, 180-degree rotation corresponds to 
an odd permutation of identical spin-; 
particles (the protons), with respect to 
which the total ground-state wave func- 
tion must be antisymmetric. The low- 
temperature wave function can be con- 
structed from linear combinations of 
nuclear-spin and rotational wave func- 
tions. Thus, a symmetric nuclear-spin 
wave function (I = 1, where I is the 
nuclear-spin-state quantum number) 
combines with an antisymmetric rota- 
tional wave function (J odd) and vice 
versa. These two cases correspond for 
zero barrier height to the two kinds of 
H-) molecules referred to as ortho- and 
para-hydrogen, respectively. For finite 
barrier heights, J is no longer a "good" 
quantum number to describe the en- 
ergy levels. The total nuclear spin of 
the molecule, however, must still change 
in a transition between the two low- 
est energy levels, that is, in a tunneling 
transition. 

We note that transitions in which 
the total nuclear spin of the molecule 
changes cannot be observed in optical 
spectroscopy because photons do not 
couple to the nuclear spin. Neutrons, 

however, do couple and are quite use- 
ful for studying rotational transitions 
of this type. The neutron has a nuclear 
spin of i, and a flip of the neutron spin 
during the scattering process will cause 
the total nuclear-spin state of the H2 
molecule to change also (A1 = Â ± I )  
A spin-flip neutron-scattering process 
then allows direct observation of the 
ortho-para transition in hydrogen-for 
example, para-hydrogen (with I = 0 
and J even) changing to ortho-hydrogen 
(with I = 1 and J odd). For afiee hy- 
drogen molecule with two rotational 
degrees of freedom, the transition that 
changes the rotational state from J = 0 
to J = 1 has an energy of 2B, where 
B is the rotational constant. However, 
if the molecule is constrained to rotate 
in a plane with only one degree of ro- 
tational freedom, as is the case for our 
compounds, the transition has an en- 
ergy of B for zero barrier height, that is, 
for free rotation. Moreover, as we dis- 
cussed above, the energy for a tunneling 
transition rapidly becomes smaller with 
increasing barrier height until, at infinite 
barrier height, the splitting disappears 
and the two states become degenerate. 

Experimental Confirmation. Now 
that we have selected an appropriate 
model for the rotational dynamics of the 
dihydrogen ligand in our system, it is 
a simple matter to relate the observed 
rotational transitions to the height of 
the rotational barrier. To observe both 
the high-frequency transitions to the ex- 
cited librational state (the longer arrows 
in Fig. 11) and the very-low-frequency 
transitions associated with rotational 
tunneling (the two short arrows in the 
exploded portion of Fig. 1 I), we had 
to perform experiments on two spec- 
trometers, each located at a different 
neutron source. The high-frequency 
torsional transitions were measured 
on the Filter Difference Spectrometer 
at LANSCE by using two samples for 
each complex, one of which had dideu- 
terium instead of dihydrogen ligands. 
Vibrational modes involving mainly the 
dideuterium ligand cannot be "seen" in 
the presence of the many more modes 
that include hydrogen motion (that is, 
those of the organophosphine ligands). 
The deuterium-substituted sample thus 
served as a "blank" for subtracting all 
the various vibrational modes except 
those of interest-the motions of the 
dihydrogen ligand. Figure 12 shows 
the results for two tungsten complexes: 
one with tricyclohexylphosphine ligands 
(PCy3) and one with the less bulky tri- 
isopropylphosphine ligands (P(i -Pr)3). 

The low-frequency rotational tunnel- 
ing spectra for three complexes (Fig. 13) 
were obtained on a cold-neutron time- 
of-flight spectrometer at the High Flux 
Reactor of the Institut Laue-Langevin 
in Grenoble, France. No "blank" sam- 
ple was necessary in this case, since 
the other ligands were not expected to 
have observable excitations in the fre- 
quency range of interest for this experi- 
ment (which is less than 10 cm"'). 

For the two tungsten complexes with 
PCy3 and P(i-Pr)3 ligands, this type 
of analysis yielded a significant bar- 
rier height-one that was roughly 15 
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ROTATIONAL-TUNNELING SPECTRA 

Fig. 13. The spectra for the low-frequency 
transitions associated wlth rotational tunnel- 
ing are shown here for the three complexes (a) 

Mo(CO)~(PCY~)~H~, (b) W(COh(PCy3)2H2, and 
(c) W(CO)3(P(l-Pr)3)2H2. The strong central 
peak in each spectrum is an elastic-scattering 
line, whereas the peaks to both sides of that 
line are the inelastic-scattering transitions 
associated wlth rotational tunneling. The fact 
that the inelastic peaks have a doublet nature 
Is most likely due to structural disorder in the 
crystals. 

times our derived rotational constant 
for bound Hz. Using the barrier heights 
and the energy-level diagram (Fig. 1 l), 
we were able to calculate the frequen- 
cies expected for the high-frequency 
transitions associated with the torsional 
motion of both complexes. The cal- 
culated values are in good agreement 
with the experimental values measured 
with the Filter Difference Spectrometer 
(Fig. 12), which suggests that the sim- 
ple model of planar reorientaton in a 
double-minimum potential is a reason- 
able description for the hydrogen motion 
in these systems. 

The crucial question at this point be- 
comes what interactions give rise to the 
barrier to rotation. Two possible sources 
for the hindrance potential are electronic 
and steric effects. By an electronic ef- 
fect we mean that the dihydrogen ligand 
may be constrained in its orientation be- 
cause of the way the chemical bond is 
formed with the metal. In other words, 
the electron orbitals on the metal shar- 
ing electrons with those of the dihydro- 
gen ligand have a symmetry that deter- 
mines the orientation of the ligand. 

Steric effects refer to the interactions 
of the dihydrogen ligand with the sur- 
rounding atoms of the other ligands. 
These are nonbonding interactions that 
may be described by van der Waals 
forces between pairs of atoms. They 
may be summed up for all pairs formed 

(a) Mo-PCy, Complex 
- --- 

Rotational-Energy 
Splitting Elastic Rotational-Energy 

Scattering Splitting 
-2.82 cm"' 

2.82 cm"' 

-4 -2 

(b) W-PCy, Complex 

-2 -1 

(c) W-P(i-Pr), Complex 

-1 0 1 
Energy Transfer (cm -I) 
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by using either one of the H atoms on 
the dihydrogen ligand and any one of 
the surrounding atoms. As the dihydro- 
gen ligand is rotated, the sum of these 
interactions shows an angular variation, 
which gives rise to an effective "steric" 
barrier. 

In an attempt to sort out the relative 
effects of these two types of interac- 
tions, we performed separate measure- 
ments on the two tungsten complexes 
with PCy3 and P(i-Pr)3 ligands; then 
we replaced the tungsten atom in the 
PCy3 complex with a molybdenum atom 
and took measurements on this third 
complex. Thus, we hoped to gauge the 
effects of changing the central metal 
atom and of replacing the large, bulky 
PCy3 ligand with the less bulky P(i-Pr)3 
ligand. 

The peaks in the spectra of Fig. 13 
to the left and right of the strong elastic 
line represent the rotational-energy split- 
ting associated with the H2 molecule 
tunneling through the barrier from one 
180-degree orientation to the other. The 
position of these lines is extremely sen- 
sitive to the height of the barrier. A 
comparison of the three spectra shows 
that replacement of tungsten (Fig. 13b) 
with molybdenum (Fig. 13a) changes 
the tunneling frequency by a factor of 
just over 3, from 0.89 to 2.82 cm-'. On 
the other hand, replacing the PCy3 lig- 
and in the tungsten complex with the 
less bulky P(i-Pr)3 ligand (Fig. 13c) 
changes the frequency by less than 20 
percent, from 0.89 to 0.73 cm-'. 

The change that occurs when the cen- 
tral metal atom is replaced may be taken 
as reflecting the metal-dihydrogen bond- 
ing directly; that is, it is essentially an 
electronic effect. Replacing the PCy3 
ligands with P(i-Pr)3 ligands, on the 
other hand, probably has little effect 
on the electronic state of the metal and 
therefore on the metal-dihydrogen bond- 
ing. These ligands most likely produce 
a steric component of the barrier to H2 
rotation through direct, nonbonded in- 
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Table 1 

Barrier Heights to Rotation for the Dihydrogen Ligand 

Complex 

Metal Atom Ligand 

Theoretical (kcal/mole) 
Observed 

(kcaumole) 

teractions. Thus, the experimental evi- 
dence, at least in these cases, strongly 
suggests that the barrier to H2 rota- 
tion is determined more by electronic 
than steric effects. To test this conclu- 
sion, Jeff Hay, John Hall, and Caroline 
Boyle of the Theoretical Division at Los 
Alamos carried out two sets of calcula- 
tions: an ab initio calculation-that is, 
from first principles-and a molecular- 
mechanics calculation. 

The ab initio calculation treats pri- 
marily the electronic effects because 
a full set of one-electron wave func- 
tions for the whole molecule is used to 
compute the relative energy of a given 
configuration. The barrier to rotation 
was obtained from the difference in 
total energies for the structure with 
the Hz aligned along the P-M-P axis 
and the structure with the Hz aligned 
along the OC-M-CO axis. The calcu- 
lation is rather extensive, and the bulky 
organophosphine ligands must be sim- 
plified to make it possible at all. When 
unsubstituted phosphine (pH3) is used 
as a ligand instead of tricyclohexylphos- 
phine or tri-isopropylphosphine, the cal- 
culation yields a barrier height of 1.8 
kilocalories per mole for the tungsten 
complex and 0.6 kilocalorie per mole 
for the molybdenum complex. 

The second type of calculation-the 
molecular-mechanics type-may be 

viewed as representing mainly steric 
effects. In this case, the pairwise, non- 
bonding interactions between the hydro- 
gen atoms of the dihydrogen ligand and 
each of the other atoms of the molecule 

2.2 
2.4 
1.5 

Molecular 
Mechanics 

0.6 
1.4 
0.6 

are summed. The summation is repeated 
for each orientation of the ligand, gen- 
erating a curve of potential energy as 
a function of orientation. This calcula- 
tion is not sensitive to the type of metal 
atom at the center of the molecule. The 
results show a barrier height of 0.6 kilo- 
calorie per mole for the complexes with 
PCy3 ligands and 1.4 kilocalories per 
mole for those with P(i-Pr)3 ligands. 

If one makes the assumption that 
molecular mechanics treats only the 
steric effects and that the ab initio the- 
ory accounts primarily for the direct 
electronic interaction between H2 and 
the metal, barrier heights from the two 
calculations may be added to arrive at 
an estimate of the effective total bar- 
rier. These assumptions are not unrea- 
sonable, because replacement of tung- 
sten by molybdenum has no effect on 
the results of the molecular-mechanics 
case, whereas the ab initio theory uses 
the very small PHs ligands, rather than 
P(i-Pr)3 or PCy3 ligands, and thus es- 
sentially ignores steric effects. The sum 
of the two calculations for each of the 
complexes is shown in Table 1 along 
with the corresponding barrier height 
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ab initio 
(pH3) 

1.8 
1.8 
0.6 

Sum 

2.4 
3.2 
1.2 
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calculated from the observed inelastic 
neutron-scattering data. 

The calculated and observed barriers 
to Hz rotation appear, at first glance, 
to agree only qualitatively. If, how- 
ever, one takes into account the various 
limitations of the theoretical calcula- 
tions, the agreement with experiment 
is remarkably good. For example, the 
necessary structural information is not 
known in detail for all three complexes 
in this experiment, and both types of 
calculations are normally used for bar- 
rier heights that are a factor of ten or so 
higher than the one in this study. Fur- 
thermore, comparison with experimental 
data does suggest that the molecular- 
mechanics calculation overestimates the 
steric part of the barrier, since replace- 
ment of the PCys with P(i-Rj3 is found 
to change the barrier height by 0.8 kilo- 
calorie per mole, which is four times 
the experimentally observed change. In 
view of these considerations, we can 
clearly conclude that the direct elec- 
tronic binding of the dihydrogen ligand 
to the metal contributes significantly 
to the barrier, at least one-half to two- 
thirds of the experimentally determined 
value. 

The rotational tunnel splitting is an 
extremely sensitive measure of the bar- 
rier height-in fact, it depends exponen- 
tially on the value of the barrier. Such 
sensitivity has clear advantages. For 
example, the observation of a higher 
barrier in the tungsten complex than in 
the molybdenum complex is an indica- 
tion of stronger binding of the hydro- 
gen molecule to the metal atom. This 
conclusion can be reached both by ob- 
serving the higher M-Hz infrared stretch 
frequency in the tungsten complex or 
by observing the difference in rotational 
tunnel splitting. However, the change 
in infrared stretch frequency is only 10 
percent, whereas the change in rota- 
tional tunnel splitting is more than 50 
percent. It is therefore clear that rota- 
tional tunneling spectroscopy of side-on 
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Hz by inelastic neutron scattering can be 
used as a probe of the details of metal- 
to-Hz binding. 

Given the fact that the directional 
properties of the electron wave functions 
that help optimize the electron flow be- 
tween the dihydrogen ligand and the 
metal atom also seem to be largely re- 
sponsible for the barrier to H2 rotation, 
we feel that establishment of a signif- 
icant electronic component to the bar- 
rier height is convincing evidence of o* 
backbonding between the metal atom 
and molecular hydrogen. 

The latter conclusion, in particular, is 
a truly remarkable result of our neutron- 
scattering studies and illustrates the very 
fundamental details to which these cat- 
alytic model systems can be studied 
with such techniques. Apart from our 
model systems, many more realistic cat- 
alytic materials are being investigated 
by the same techniques-studies that are 
often greatly aided by previous work on 
model compounds. These more realistic 
systems include molecules adsorbed on 
dispersed metal particles, inside cavities 
of zeolites, or attached to many other 
active substrates. Although the level of 
detail that can safely be inferred from 
the "real" catalytic systems is somewhat 
lower than for the simpler model sys- 
tems, significant progress can nonethe- 
less be expected in understanding the 
catalytic function of these materials on 
an atomic scale. Neutron scattering will 
certainly play an important role in these 
studies. rn 
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x-ray and neutron 
CRYSTALLOGRAPHY 

a powerful combination 
by Robert B. Von Dreele 

ining the structure of a crystalline material remains the most 
powerful way to understand that material's properties-which may explain 

so many Nobel Prizes have been awarded in the field of crystal- 
lography. The standard tools of the crystallographer are single-crystal 

and powder diffraction, introduced earlier in "Neutron Scattering-A 
Primer." What was not mentioned was that until twenty years ago 
powder diffraction could not be used for solving a new crystal 
structure, but only for determining the presence of known crystalline 
phases in powders of unknown composition. At that time material 
had to be grown into large single crystals before crystallographers 
could unravel the positions of each atom within the repeating 
motif of a crystal lattice. This severe limitation disappeared after 
H. M. Rietveld developed a workable approach for resolving the 
ambiguities of most powder-diffraction patterns. The technique, 
known as Rietveld refinement, has opened up essentially all 
crystalline materials to relatively rapid structure analysis. 
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This article presents a further improvement in powder-pattern analysis-that of 
combining x-ray and neutron diffraction data. We used this combination to make 
the first unambiguous determination of the structures of certain high-temperature su- 
perconductors and have since produced a portable software package for use by all 
crystallographers who collect both x-ray and neutron data. Here we will discuss the 
concepts and techniques that make the combination so useful and some of our recent 
results, including the determination of fractional occupancies by different elements 
at single atomic sites in a crystal. First, however, we need to extend the concepts on 
diffraction introduced in the primer. 

What Is a Crystal? 

Most solids are crystals: They consist of very many repetitions of a single motif 
or "unit cell," of atoms. These repetitions occur at a regular array of points in three 
dimensions, a "lattice." The opening illustration is a two-dimensional analogue of a 
crystal. The unit cell there is square, and contains several objects each arranged in 
a particular way relative to the others. One question about this pattern is how much 
information one needs in order to reproduce it. Clearly, one need only describe a 
single object (a fish), the set of rules for positioning it and the other objects in the 
unit cell (the fish of other colors), and the dimension of the unit cell itself. With only 
this information the entire pattern can be laid out to infinity. The classification of 
how the objects are positioned in the unit cell (in most crystals these positions are 
symmetrical) and of how the unit cells repeat is the mathematical theory of spatial 
symmetry, which is a branch of group theory (see the sidebar "Crystal Symmetry 
Groups"). 

The crystallographer's goal is to measure the lengths and angles of the edges of 
the unit cell (the "lattice parameters") and, more important, the arrangement of the 
atoms within the unit cell. Many kinds of arrangements are possible, for example, 
the interlacing of long molecular chains in a crystallized protein, or the stacking of 
metal and oxygen atoms in a superconducting oxide, but in any crystal the arrange- 
ment is the same in every unit cell. Why should atoms and molecules form such or- 
derly structures? A solid holds together because the atoms and molecules in it are 
attracted to each other. Thus the minimum-energy configuration of the solid occurs 
when its constituents are in as close contact as possible with their neighbors. This 
criterion is usually realized by a regular array, just as bricks in a neat stack are in 
closer contact and take up less space than bricks in a jumbled pile. 

The unit cell of a crystal is extremely small, typically 10 angstroms cen- 
timeter) on a side, whereas the sides of crystals in a powder may be 1000 to 100,000 
times larger. An equivalent stack of bricks, each 20 centimeters on a side, would ex- 
tend between 200 meters and 20 kilometers. The disparity in size between a unit cell 
and a crystal is so vast that we can model a crystal as if it contained an infinite num- 
ber of unit cells in all directions. This approximation has an enormous simplifying 
effect on a mathematical description of a crystal because we need to describe only 
the unit cell and can ignore the crystal as a whole except to note that the unit cell 
repeats indefinitely in all directions. 

With these ideas in mind, we can start with crystallographic mathematics and 
then connect it with the way a crystal scatters neutrons (reversing the plan of the 
primer). How do we mathematically describe a crystal? First, the description must 
reflect what we actually observe about a crystal. We "see" atoms in a crystal by scat- 
tering neutrons or x rays from them, so the mathematical model needs to describe the 
density of scattering power, p(r), a function of position, r, within the crystal. This 
scattering density is smooth and usu,ally real and positive. (In some special cases it 
can be negative or even complex.) Second, the function needs to repeat infinitely in 
all directions to match the repetition of the unit cells. In one dimension p(x) might 
look like the curve in Fig. la, which gives the x-ray scattering density along one di- 

Los Alamos Science Summer 1990 



X-Ray and Neutron Crystallography 

rection in molybdenum disulfide for two unit-cell repeats. The tallest peaks repre- 
sent the scattering density around the molybdenum atoms; the smaller peaks on either 
side correspond to the sulfur atoms. Like any periodic function, the variation of the 
scattering density with position x along the repeat direction can be expressed as an 
infinite sum of sine and cosine functions, or in other words, as a Fourier series in one 
dimension: 

l m  
p~ = [cos (-2~") + i sin (-2r;x)I 

n=O 
a 

Here n is an integer, a is the length of the unit cell in the x direction, and Qn = 
27rn/a. Figure l b  shows the first eight terms in the Fourier series for p(x) of MoS2. 
Each term represents a stationary wave, or "Fourier component," of scattering density 
whose wavelength is a /n ,  so that in the repeat distance a the wave undergoes exactly 
n oscillations. Thus the sum in Eq. 1 contains only waves that have a as a repeat 
distance. Each stationary wave has an amplitude Fn,  which for the MoS2 structure is 
either positive or negative. In the most general case Fn can be complex. 

Just as the displacement, x, can be represented by a vector in one-dimensional 
real space, the inverse wavelengths n/a (= Qn/27r) can be represented by vectors in 
one-dimensional "reciprocal space." These "reciprocal-lattice" vectors define a row 
of equally spaced points, labeled by the values of n. All the remaining reciprocal 
space is empty. The points are called the "reciprocal lattice" because their spacing is 
l / a ,  the reciprocal of the real-lattice spacing. (The name "reciprocal space" has the 
same origin.) Their locations depend only on a ,  the periodicity of the real lattice, and 
not on the contents of the unit cell. In Fig. 1c the amplitude Fn of the nth Fourier 
component of p(x) for MoS2 is plotted at the reciprocal-lattice point n/a. 

Thinking of the On's as one-dimensional vectors (the wave vectors of the Fourier 
components), we note from the definition of the Qn 's and the discussion of diffrac- 
tion in the primer that when the momentum transfer in a diffraction experiment 
(h/27r)Q = (h/27r)Qn, we observe a Bragg peak whose intensity is S(Qn) = I /^ 12.  
In crystallographic terminology the Fn's are called structure factors; unfortunately the 
same name is used by the neutron-scattering community for S (Qn) = IFn 12. What- 
ever the nomenclature, crystallographers frequently describe crystals in reciprocal 
space because the quantities they measure directly are the reciprocal-lattice vectors 
Qn and the intensities on the reciprocal lattice S(Qn)/27r. Figure 2 shows a variation 
of Fig. 1 whose significance will be discussed later. 

In order to extend Eq. 1 to descriptions of three-dimensional crystals, we replace 
Qn = 27rn/a with a three-dimensional wave vector Qh. For simplicity we begin with 
a real lattice whose three axes are mutually perpendicular, as shown in Fig. 3a. Then 
the natural coordinates are orthogonal, and 

h k l  
Qh = 2 ~ ( -  - -) . 

a ' b ' c  

Here a ,  b, and c are the repeat distances along the three axes of the unit cell, or lat- 
tice spacings, and the integer triplet h = (hkl) gives the components of Qh along 
the three axes of the reciprocal-lattice unit cell, measured in units of the reciprocal- 
lattice repeat distances a*  = 1 /a,  b* = 1 /b, and c* = 1 /c. Thus, in analogy 
with the one-dimensional case, the integer triplets h specify all the possible Qh val- 
ues, that is, all the wave vectors of Fourier components of the three-dimensional 
scattering-density distribution. Each Qh is perpendicular to a stack of parallel planes 
in real space, and 27r/IQhl (which has the dimensions of length) is the spacing be- 
tween those planes, commonly called the "d-spacing". Each h labels a set of planes 
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A ONE-DIMENSIONAL LATTICE 
AND ITS RECIPROCAL-SPACE 
REPRESENTATION 

Fig. 1. (a) The x-ray scattering density 

along one direction of molybdenum disulfide 

Illustrates a one-dimensional lattice with 

a unit cell of length a. (b) The first eight 

Fourier components (n = 0 to 7) in Eq. 1 

for the scattering-density function in (a). 

The wavelength of the nth component is :. 
Note that the phase of some of the waves is 

offset by 180 with respect to others. (c) The 

amplitudes Fn of the Fourier components from 

(b) plotted in reciprocal space. The reciprocal 

lattice is the set of points whose spacing 

is a ' ,  the reciprocal of the lattice spacing 

in real space. Note that some amplitudes are 

negative (those of waves shifted in phase by 

1 8 0  with respect to the waves with positive 

amplitudes). (d) The intensities 1 F,, 12, or 

S(Qn), plotted in reciprocal space. This 

pattern of intensities would be obtained from 

a diffraction experiment. This pattern reveals 

the size of the unit cell, but as explained in 

Fig. 2 does not yield a unique determination 

of the contents of the unit cell. 

Scattering Density 

0  0.5 a  1.0 a  1.5 a  2.0 a  

(b) Fourier Components 

(c) Fourier Amplitudes, F,, 
2 

(d) Fourier Intensities, 1 Fnl 

1 2 3 4 5 6 7  O Ã ‘ Ã ‘ Ã ‘ Ã  
a a a a a a a  

1 2 3 4 5 6 7  0  - - - - - - -  
a a a a a a a  

perpendicular to Qh. Together the h's specify all the sets of planes that pass through 
unit cells in a periodic way. Therefore just as in one dimension a sum over the wave 
vectors 27rnIa with integer n sufficed to describe a periodic p(x), in three dimen- 
sions a sum over the wave vectors Qh, or over the h, is all we need to describe p(r) 
for a crystal. The integer components hkl of h are identical to the Miller indices that 
crystallographers use to label faces along which crystals break. More important, the 
Qh are the special wave vectors Q at which Bragg scattering can occur, as defined in 
the primer. In the general case, illustrated in Fig. 3b, the Qh(= 27r(ha* + kb* + lc*)) 
are still perpendicular to stacks of planes and their lengths are still equal to 27r di- 
vided by the d-spacings. Note that the Qh must be defined in terms of the translation 
vectors of the reciprocal lattice, which are no longer simply parallel to the translation 
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(a) Scattering Density 

(b) Fourier Components 

0 0.5 a  1.0a 1.5a 2.0 a  
2 

(c) Fourier Amplitudes, Fn (d) Fourier Intensities, lFn1 

1 2 3 4 5 6 7  O Ã ‘ Ã ‘ Ã ‘ Ã  
a a a a a a a  

1 2 3 4 5 6 7  0 - - - - - - -  
a a a a a a a  

vectors of the real lattice but are more complicated functions of its parameters. 
Returning to the three-dimensional version of Eq. 1, we replace the product Qnx 

by the dot product Qh- r and normalize the Fourier series by the unit-cell volume Vc: 

1 
p(r) = - FI, exp[-i ( ~ h  . r)] .  

vc h 

(A specialist in this field would write equations such as this in crystallographic co- 
ordinates, using h instead of Q h  and defining r in terms of displacements along the 
crystal axes instead of along the Cartesian directions; furthermore the displacements 

THE PHASE PROBLEM IN 
CRYSTALLOGRAPHY 

Fig. 2. The same as Fig. 1, except that one 

Fourier component has been phase-shifted 

by 1 8 0  to produce an entirely different and 

fictitious scattering density for MoS2. The 

shifted wave and its amplitude are shown in 

red. This example illustrates the ambiguity 

that arises In diffraction experiments from 

measuring the magnitudes of the Fn's but not 

their phases. Although the plot of the Fn's 

changes, the plot of  IF,,^*, which Is analogous 

to a diffraction pattern, does not. Thus 

diffraction experiments can not distinguish 

the scattering density in Fig. 1 from that in 

this figure. Determining the phases Is called 

"solving the structure" because only then can 

the contents of the unit cell be determined. 
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UNIT CELLS IN REAL AND 
RECIPROCAL SPACE 

Fig. 3. (a) A unit cell In real space (solid lines) 

and its associated reciprocal unlt cell (dashed 

lines), for a three-dimensional lattice whose 

translation vectors, a, b, and c, are mutually 

orthogonal. The reciprocal-lattice translation 

vectors a*, b*, and c* are collinear with those 

of the real-space lattice, but their lengths are 

the reciprocals of the lengths of the real-space 

vectors. Note that a * = ~ ~ 1 ~ ~ / 2 7 r  is normal to 

the real-space be, or (1 OO), plane; similarly 

the other reciprocal-lattice translation vectors 

are normal to their corresponding planes. (b) 

A unit cell and reciprocal unlt cell for a lattice 

In which none of the translation vectors a, b, 

and c are orthogonal. The reciprocal-lattice 

translation vectors a*, b*, and c* are no longer 

collinear with their real-space counterparts 

but they are still normal to the planes that 

bound the unlt cell, and their lengths are the 

reciprocals of the spacings of those planes. 

(c) The mathematical formulas describing the 

reciprocal-lattice translation vectors and the 

wave vectors Qh. (d) An example of part of 

a set of planes and its &spacing in a crystal 

whose unit cell Is that shown in (b). The 

planes are labeled by h = (0 0 1) (parallel to 

the ab plane), and their &spacing is equal to 

c * l l .  In general Qh =. 27r(ha* + kb* + lc*) 

and QOOl = 27rc* is perpendicular to the 001 

(a) Orthorhombic Unit Cell 

Reciprocal-Lattice , Unit Cell 

(b) Trigonal Unit Cell 

(c) General Properties of Reciprocal-Lattice 
Translation Vectors and On 

a x b  b x c  b*- c x a  c*- a*= - 
a - ( b x c )  ' b * ( c x a ) '  c - ( a x b )  

a*.a=b*.b=c*.c = 1  

Q,, = 2n(ha*+ kb* + /c*^ 

Q,, -L. to h planes 

Q , = 2na* 

QOIO = 2nb* 

QOOl = 2nc* 

(d) Example of Set of Planes Defined by 
Unit Cell in (b) 

(0 0 1) planes 

would be divided by the lattice spacings to give the components of a dimensionless 
vector. This shorthand is convenient for many purposes and is used in the references 
cited at the end of this article.) Equation 2 might appear extremely similar to the 
Van Hove equation for diffraction, Eq. 2 in the Primer, but it is in fact a kind of in- 
verse. We will cover that relationship in a moment, but first we need to more fully 
consider what Eq. 2 implies about crystallographic mathematics. 

From Eq. 2, we see that the reciprocal-space description of a crystal in three 
dimensions is based on an array of points defined by the vectors Qh/27r and extend- 
ing to infinity in all directions from a single origin. These points are the comers of 
an infinitely repeating reciprocal unit cell. Each amplitude Fh (positive, negative or 
complex) is associated with the reciprocal-lattice sites Qh/27r. A complex amplitude 
can be represented with the usual real and imaginary parts or as a "phase shift" of 
the structure factor: 

Fh =Ah + iBb = \Fb\eiah, 

where a^ = tanl(fih/Ah). We will discuss the importance of phase shifts later in 
this section. 

Figures 4 and 5 give examples of two-dimensional periodic scattering densities 
and their representations in reciprocal space (their Fourier transforms). In two dimen- 
sions the reciprocal-lattice vectors are perpendicular to sets of parallel lines (rather 
than planes) in real space. Larger h values correspond to more closely spaced lines. 
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As Figs. 4 and 5b show, the locations of the reciprocal-lattice points are determined 
solely by the size and shape of the real unit cell, whereas the intensities I F ~ I *  reflect 
the unit cell's contents. The relatively few Fh with small lhl (those closest to the 
origin) give only the gross features of the structure, that is, the features whose size 
is roughly on the order of the unit-cell dimensions. The much more numerous Fh 
with large lhl contain information on the fine details within the unit cell, for example, 
exact atom locations and anisotropic features of the thermal motion. 

Determining Crystal Structures 

A property of Fourier series is that they can be "inverted." In crystallography, 
this transformation goes from the real-space to the reciprocal-space description. Thus, 
the inverse Fourier transform of Eq. 2 gives the amplitude in terms of the scattering 
density: 

The amplitude is first expressed as an integral to indicate that all of the space within 
the unit cell is used. It is then expressed as a sum by using the convolution proper- 
ties of Fourier integrals and series. A convolution is a type of multiplication. hi this 
case it is used to break up the integral into a sum over all the atoms in the unit cell; 
the coefficientfi of the term for the ith atom is called the "scattering factor" of that 
atom. The scattering factor of an atom is the Fourier transform of the scattering den- 
sity in its vicinity and in this expression includes the "smearing" effect of any oscil- 
lation (or thermally induced motion) of the atom about its average position. The so- 
called coherent scattering length bcoh,i of neutron scattering is a scattering factor that 
does not include the effects of thermal motion. (This article deals only with coher- 
ent scattering, so in reference to scattering lengths the word "coherent" and the sub- 
script "coh" will be suppressed from now on.) The Fourier transform represented in 
Eq. 2 implies that if the Fh are known, one can calculate the scattering density p(r), 
which maps the locations and thermal motions of the atoms. Similarly, the transform 
in Eq. 4 implies that, if the atom positions and thermal motions are known, then the 
Fh can be calculated. 

A SQUARE LATTICE 
AND ITS RECIPROCAL-SPACE 
REPRESENTATION 

Fig. 4. A lattice in real space (left) with fourfold 

rotational symmetry and the corresponding 

reciprocal lattice (right), which has the same 

point symmetry (see "Crystal Symmetry 

Groups"). The intensities IF,,I* depicted on 

the reciprocal lattice differ from each other 

because the real-space unit cell has six point 

scatterers rather than one. Specifically, the 

pattern of intensities reflects the sixfold 

symmetry of the contents of the real unit cell. 

(Photos reproduced with permission from 

Cornell University Press.) 

Los Alamos Science Summer 1990 



SIMPLE VERSUS COMPLEX UNIT CELL IN REAL AND RECIPROCAL SPACE 

Fig. 5. Two-dimensional scattering densities 

(left) and their corresponding intensity rep- 

resentation in reciprocal space (right). The 

real-space lattice in (a) is less symmetrical 

than that in Fig. 4, having two-fold rotation 

and inversion. The real-space figure shows a 

unit cell and three sets of parallel lines (the 

two-dimensional equivalent of parallel planes 

in three dimensions) with the &spacings of 

those lines. Note that the set of lines indexed 

h = (1 0) is not drawn through the point scat- 

terers, because one need not think of those 

lines as locations of atoms in a crystal, but 

rather as defining periodic density variations 

with a definite orientation and spacing. The 

other sets of lines are drawn through the point 

scatterers for clarity. The Oh vectors corres- 
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ponding to the labeled sets of lines are shown 

in reciprocal space (right), along with a recip- 

rocal unit cell. Each Qh vector is perpendicular 

to the set of lines that h indexes, and its 

length lQhl is inversely proportional to the d- 
spacings of that set of lines. Because the unit 

cell contains only a single point scatterer, the 

intensities I/T,12 on the reciprocal lattice are all 

identical. (b) A real-space lattice in which each 

point in (a) has been replaced by a five-point 

pattern or "molecule." This scattering density 

does not even have inversion symmetry. The 

points of its reciprocal lattice are in the same 

positions as those of the reciprocal lattice in 

(a), but here the intensities l6l2 vary. Thus 

the locations of the reciprocal-lattice points 

provide information about lattice geometry 

whereas the intensities provide information 

about the contents of the unit cell. The heavy 

lines correspond to h = (0 1); they and the light 

lines together have h = (0 3). (The reciprocal- 

lattice figures were made by shining a laser 

beam through masks with holes punched 

out at the real-lattice sites and recording the 

diffracted light on film. With this method one 

can photograph much of the two-dimensional 

reciprocal lattice at once. Unfortunately, 

scattering neutrons analogously from a plane 

of atoms is not feasible. Neutrons interact so 

weakly with matter that a beam perpendicular 

to a single plane of atoms would pass through 

practically unaffected.) (Photos reproduced 

with permission from Cornell University 

Press.) 
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The Van Hove equation for elastic-scattering intensities given in the primer is 
the convolution of Eq. 4 with itself: 

where Ih is the measured scattering intensity at Q = Qh. Equation 5 shows how 
elastic-scattering experiments directly measure the lFh12, the squares of the magni- 
tudes of the structure factors. In the last form of the convolution, the double sum- 
mation covers all interatomic vectors in the crystal, which matches our picture of 
coherent scattering as arising from interference effects between atoms. The double- 
integral form also reflects interference effects, since the largest contributions come 
from those p(ri)p*(rj) products such that ri and rj correspond to atomic positions. 
In this formulation of the Van Hove equation, we recognize that both// and p(r) can 
be complex and that /; has a Q dependence, so we keep them inside the integral and 
the sum. Although bi and p(r) are rarely complex in neutron diffraction, they are 
quite often complex in x-ray scattering because atoms can absorb x rays and because 
x-ray wavelengths are comparable to the size of the electron clouds from which they 
scatter, whereas neutrons scatter from the nearly point-like nuclei. In this discussion 
we have seen that by starting from a rather mathematical description of a crystal, we 
can interpret its coherent scattering properties for either x rays or neutrons in a par- 
ticularly clean way. 

The Van Hove equation gives us the relationship between the array of inter- 
atomic vectors and the observed intensities but, it also points out a major difficulty. 
Using Eq. 2 requires knowing both the real and imaginary parts of the Fh, but a 
diffraction experiment yields only the magnitudes of the IFh[' and not the phases 
a h .  Without the phases we can not determine the positions of the atoms in the unit 
cell or even their number. The central problem of crystallography is recovery of the 
phases, so that the Fourier transform in Eq. 2 can be performed. The solution of this 
problem, known as solving the crystal structure, is the subject of considerable effort 
by crystallographers. The reader is encouraged to examine some of the references 
listed at the end of this article. Figure 2 is a one-dimensional illustration of the am- 
biguity. A new hypothetical scattering density p ( ~ )  has been constructed by shifting 
the phase of the third Fourier component in Fig. l a  by TT radians. This shift is equiv- 
alent to multiplying that wave's amplitude, F3, by -1, as seen in the graph of the 
Fh in reciprocal space, Fig. 2b. A phase shift by some angle a other than 0 or TT is 
equivalent to multiplying F3 by the complex number exp(ia)-hard to depict on the 
page. (Mathematically inclined readers can convince themselves that the Fh's are 
real if and only if the unit cell is centrosymmetric, as defined in "Crystal Symmetry 
Groups.") In any case, the phase shift does not affect the value of M2 (Fig. 2c). 
Since diffraction experiments provide only the IFh\', there is, in principle, no way of 
knowing whether the measured reciprocal lattice arises from the real-space scatter- 
ing density of Fig. l a  or from the quite different density of Fig. 2a. In practice, the 
crystallographer realizes from his or her knowledge of physics and chemistry that the 
density in Fig. 2a makes no sense. Solving the structure of more complicated materi- 
als is not so easily done. Then the question is how to directly use the 1 ~ ~ 1 ' .  

One possible use is to apply a Fourier transform to the Van Hove equation to get 
a mapping of the interatomic vectors: 

Equation 6 is effectively a map of the p(ri)p(r,) product for all vectors (ri-r,). 
The transform can be performed with no knowledge of the crystal structure apart 
from the unit-cell dimensions and point symmetry, which derive directly from the 
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NEUTRON SCATTERING LENGTHS 

Fig. 6. Neutron scattering lengths for all 

the elements from hydrogen through xenon. 

Every fourth element is marked. Each element 

is made up of its natural mixture of isotopes. 

Unlike x-ray scattering factors, neutron 

scattering lengths do not increase linearly 

with atomic number. Instead they vary 

erratically, not only from element to element 

but from isotope to isotope. 

diffraction data. In crystallographic parlance P(ri - r,) is known as the Patterson 
function. It provides one of the routes to solving the crystal structure. Since the 
p(ri)p(r,) product is largest for vectors between strongly scattering atoms, the highest 
features in the Patterson function correspond to vectors between pairs of such atoms 
and can generally be interpreted to give their locations. This technique for solving 
crystal structures, known as the heavy-atom method, is one of the oldest techniques 
known. It is generally applicable only to x-ray diffraction data for materials whose 
unit cells are composed of one strongly scattering heavy atom (typically a metal) and 

a large number of more weakly scattering light atoms (C, 0, N, etc.). The heavy- 
atom positions can then be applied to Eq. 4 to get an estimate of the phase angles to 
use in Eq. 2, which produces an approximation to p(r). This scattering-density map 
usually shows enough atom postions to repeat the process and expand the solution 
to include all the remaining atom positions, thus solving the structure. The heavy- 
atom method is not so useful in the case of neutron scattering because the scattering 
lengths of all atoms are the same within an order of magnitude (Fig. 6). The other 
methods for solving crystal structures have their roots in the properties of the Pat- 
terson function and its inverse, the Van Hove equation. The only exception is the 
time-honored method of just guessing atom positions and using Eq. 4 to judge the 
accuracy of the guess by comparing the calculated with observations. 

The Geometry of Diffraction in Reciprocal Space 

Let's consider diffraction experiments that use monochromatic beams, that is, 
those such that all the neutrons or x rays have the same wavelength A. Then, as 
noted in the discussion following Eq. 3 of the primer, one can see Bragg peaks only 
when the planes that produce them are properly oriented with respect to the beam. 
In a single-crystal diffraction experiment, the crystal is rotated, in an apparatus like 
that shown in Fig. 7, so as to generate Bragg reflections with various values of h. 
Then the detector is positioned to measure their 1 ~ ~ 1 ~ .  A powder experiment involves 
many crystals at once, all randomly oriented. We need to understand the effect of 
different crystal orientations in both single-crystal and powder experiments. 

As we have seen, the Qh vectors are perpendicular to sets of planes of the crys- 
tal, and the h vectors correspond to the Miller indices that describe its faces. Thus 
there is a connection between the physical appearance of a crystal and its reciprocal- 
space description. Real space and reciprocal space are "hooked" together (see Fig. 3) 
so that every feature found in real space corresponds to a feature in reciprocal space 
via Fourier transformation. Therefore when we rotate the crystal, we also rotate its 
reciprocal lattice. 
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Figure 8 depicts Bragg scattering in reciprocal space. In terms of the reciprocal- 
lattice vectors, we can write Bragg's law simply as IQI = lQhl, using IQI = 47r(sin (?)/A 
(see Fig. 5a of the Primer) and IQh = 27r/dh where dh is the spacing of the planes 
labeled by h. Thus depicting the elastic-scattering triangle (again in Fig. 5a of the 
primer) in reciprocal space provides a useful geometric construction (here we mul- 
tiply all the reciprocal-lattice distances by 271- in order to compare them with wave 
vectors). Since for elastic scattering the initial and final wave vectors are equal in 
magnitude, or lki 1 = lkf I, all the possible kf9s fall on the surface of a sphere with ra- 

A \ X Rotation R~~~ rfir^ 

Diffracted 
Beam 

oo Rotation 

26 Rotation 

dius 271-/A, commonly called the Ewald sphere. As seen in Fig. 8, the Ewald sphere 
passes through the origin because Q = 0, or equivalently k; = kf, corresponds to elas- 
tic scattering in the forward direction. The Qh of a reciprocal-lattice point that falls 
on the Ewald sphere is equal to the Q at which Bragg scattering occurs; the scatter- 
ing angle 20 between k; and kf is shown on the figure. The construction makes it 
easy to see the effect of rotating the crystal. When the crystal rotates, the reciprocal 
lattice rotates with it so that each of its points moves on an arc centered at the ori- 
gin. As each point passes through the Ewald sphere, diffraction occurs for that Qh at 
the corresponding scattering angle 0. This is the basis for conventional single-crystal 
diffraction experiments. The intensity of the scattering seen by the detector when Qh 
passes through the Ewald sphere is proportional to but it also depends on the 
angle that the Qh arc makes with the sphere surface (the so-called Lorentz correction 
to the intensities). 

Because a powder consists of a multitude of small crystals, the reciprocal-space 
picture has to be modified from that given for a single crystal. Instead of an array of 
points, the Qh vectors define a set of nested spheres, each one corresponding to the 
multitude of directions that each Qh points for all the crystals that make up the pow- 
der (Fig. 9). Then the orientation of the powder sample is immaterial, and the Ewald 
sphere for the illuminating radiation intersects all the Qh spheres with lQhl < 4 4 A .  
Thus diffraction occurs simultaneously at a variety of angles. The observed intensity 
again depends on \ F ~ \ ~ ,  and the Lorentz correction depends on the angle at which the 
Ewald sphere and the Qh sphere intersect. In addition, the crystal symmetry may re- 
quire that related h vectors have the same length and therefore that their respective 
spheres exactly coincide. For example, in the cubic crystal structure for salt (NaCl), 
the Qh vectors with h = (1 0 O), (0 1 O), (0 0 I), (1 0 O), (0 - 1 O), and (0 0 - 1) all have 
identical lengths and identical F! values. The measured intensity at the correspond- 
ing angle is proportional to 61~1001~; the factor of 6 is the reflection multiplicity. A 
powder pattern then contains all the intensity information inherent in the reciprocal 

SINGLE-CRYSTAL DIFFRACTOMETER 

Fig. 7. A single-crystal diffractometer with 

three axes for positioning the crystal in the 

incident beam so that a particular set of 

planes in the crystal scatters the incident 

radiation in the plane containing the detector 

arm. The detector angle can be set at the 

proper 20 to observe the reflection (once a 

preliminary x-ray experiment has determined 

the orientation and size of the reciprocal unit 

cell). 
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SINGLE-CRYSTAL DIFFRACTION 
IN RECIPROCAL SPACE 

Fig. 8. A reciprocal-space representation of 

single-crystal diffractlon of monochromatic 

radiation of wavelength A. A sphereof radius 

lkil = 27r/A is drawn through the origin of 

the reciprocal lattice-the "Ewald sphere." 

Since diffractlon is an elastic process, the 

wave vectors of the incident and scattered 

radiation, ki and kf, have equal length and can 

be drawn so that they are radii of the sphere. A 

few of the points of the reciprocal lattice touch 

the surface of the Ewald sphere. Note that the 

Qh vector for each such point coincides with 

Q, the third side of the scattering triangle. 

In other words, Q=Qh (a version of Bragg's 

law) and diffraction occurs at the angle 20 

between ki and kf. Rotation of the crystal 

corresponds to rotating the reciprocal lattice, 

causing other points to touch the Ewald 

sphere and diffraction to occur at other 

scattering angles. 

Reciprocal- 
Lattice 
Origin 

lattice, but all the directions of the vectors are lost along with the phases of the struc- 
ture factors. This situation was neatly summarized long ago by W. H. Bragg in his 
1921 Presidential Address to the Physical Society. 

All the spectra of the different planes are thrown together on the same dia- 
gram, and must be disentangled. This is not so difficult as it might seem. 
. . . The spectra of the organic substances show how very diversified they 
are, and illustrate the power of a method of analysis which promises to be 
of great use, since every crystal has its own characteristic spectrum. 

Despite Bragg's optimism about interpretation of a powder pattern, only recently 
has there been any real progress in powder pattern analysis. The classical use of 
x-ray powder patterns has been analytical, to enable identification of crystalline phases 
in an unknown mixture. This is usually achieved by matching the line positions and 
relative intensities against a compendium of such values obtained by measuring pat- 
terns of pure materials. Commercial x-ray powder diffractometers come with soft- 
ware packages that do the matching automatically. The computer file of standard 
materials maintained by the Joint Commission on Powder Diffraction Standards now 
contains over 50,000 entries. Our problem, however, is to unravel a powder pattern 
and extract the crystal structure responsible for the observed intensity distribution. 

Crystal Structures from Powder Patterns 

For a long time the only way a powder pattern could be interpreted to give 
the crystal structure was a variation on the methods used for single-crystal diffrac- 
tion data. The first step consists of identifying the vectors h (or h,  k ,  I ) ,  that give 
rise to the peaks in the pattern thus identifying the crystal lattice and its parameters 
a ,  b, and c. This process, known as indexing the pattern, can be complex for low- 
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(a) Reciprocal-Space Geometry 

POWDER DIFFRACTION IN 
RECIPROCAL SPACE 

(b) Powder-Diffraction Pattern 

symmetry crystals but is quite easy for cubic structures. In that case the relationship 
between h and d-spacing gives 

where a is the cubic-lattice spacing. One need only number the peaks starting from 
the origin, skipping those numbers that are not sums of three squares of integers 
(7, 15, 23, 28, etc.), and then tally up the possible hkl combinations for each peak. 
Then the intensities of individual peaks are measured and converted to structure fac- 
tor magnitudes. These could then be used to "solve" the structure (remember this is 
a puzzle because of the lost complex character of Fh). The main problem with this 
technique is that only for very simple structures are the peaks in a powder pattern 
sufficiently separated to allow measurement of individual peak intensities. One can 
index the pattern of almost any substance and thus find a description of the lattice. 
However, the peaks are usually so heavily overlapped that extraction of individual 
peak intensities is impossible, and the magnitudes of most of the individual structure 
factors are unknown. 

Fig. 9. (a) A reciprocal-space representation 

of powder diffractlon of monochromatic 

radiation. The reciprocal-lattice points for a 

powder are smeared out onto the surfaces 

of a nested set of spheres, all of which 

intersect the Ewald sphere if dh > A/2. 

Thus diffraction from all planes whose d- 

spacing is greater than or equal to \/2 can 

be recorded in a single measurement with 

single-wavelength radiation. (b) The powder 

diffraction pattern that would be recorded 

from a crystal having this reciprocal lattice. 

For clarity, the intensities are shown here but 

are not plotted on the reciprocal lattice in (a) 

(whereas they were in Figs. 4 and 5). 
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OVERLAPPING PEAKS IN A POWDER 
DIFFRACTION PATTERN 

Fig. 10. A small segment of a time-of- 

flight powder-diffraction pattern showing 

the total intensity and contributions to It 

from background and from several Bragg 

reflections. Note that four Bragg reflections 

contribute to the left-most observed peak. 

About twenty years ago H. M. Rietveld suggested a solution to this problem. He 
recognized that a mathematical expression could be written to represent the observed 
intensity Ic at every position Q in a powder-diffraction pattern: 

This expression has a contribution from the background and from each of the Qh that 
are in the vicinity of Q (Fig. 10). Unlike the stick-diagram representation of a pow- 

Observed intensities 

4300 4400 4500 4600 
Time of Flight (p) 

der pattern shown in Fig. 9, a real powder pattern suffers from line broadening, so 
diffraction from the planes labeled by h contributes not only at Qh but at all nearby 
Q. The pattern in Fig. 10 also exhibits line anisotropy, which arises from the asyrn- 
metry of the spallation-neutron pulse. In the Rietveld method one models the ob- 
served pattern by considering the factors that affect both the line shape and its inten- 
sity. The adjustable parameters for the model are then refined by a nonlinear least- 
squares process that is similar to the process very commonly used in single-crystal x- 
ray structure analysis. The 1Fhl2 parameters obtained from the fit are a reconstruction 
of the real 1Fhl2; the parameters for line broadening and anisotropy provide inforrna- 
tion about particle sizes, structural defects, and other phenomena that distort the ideal 
Bragg pattern. 

This approach has been so successful that it has led to a renaissance in powder 
diffraction, and this technique of treating powder-diffraction data is now known as 
Rietveld refinement. 

How Are X-Ray and Neutron Diffraction Complementary? 

In generating a model to perform the inverse Fourier transform shown in Eq. 4, 
we postulate a set of atom positions and assign a scattering factor/ to each atom, 
which is the Fourier transform of the scattering density about its position. However, 
because x rays and neutrons scatter by different mechanisms, the corresponding scat- 
tering factors are quite different. Neutrons are scattered primarily by atomic nuclei. 
Since the nuclear dimensions are roughly 100,000 times smaller than the neutron 
wavelength, the nuclei act like point scatterers and neutron scattering factors (scatter- 
ing lengths or b's) are independent of IQI. Also, nuclear scattering is a combination 
of "potential" scattering and "resonance" scattering. Potential scattering depends on 
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the number of nuclear particles and resonance scattering results from neutron absorp- 
tion by the nucleus. These two factors sometimes add and sometimes subtract to give 
neutron scattering lengths that vary erratically from one element to another and from 
one isotope to another (see Fig. 6). 

On the other hand, x-ray scattering occurs primarily by interaction with the elec- 
trons that surround an atom. Consequently, the strength of the scattering depends 
on the number of electrons that surround an atom so that the scattering power of an 
atom increases with atomic number. Thus, x-ray scattering factors are usually ex- 

Co 
Fe 
Ti 

Co' 
MQ 
0 

pressed as some multiple of the scattering power of one electron. In addition, the 
spatial extent of the electron cloud around an atom is roughly the same as the x-ray 
wavelength, so the x-ray scattering factor falls off with increasing IQI. The scattered 
intensity also has a contribution from anomalous dispersion when the x-ray energy 
is near an absorption edge for the scattering atom. The absorption edge for an inner 
electron shell of an element is the minimum energy at which an atom can absorb an 
x ray and consequently eject an electron from that shell. The scattering factor can be 
strongly modified by this process and acquire both real and imaginary components 
that are only partially dependent on I Q I .  Thus the scattering factors for x rays look 
like those shown in Fig. 1 1. 

~ i v e n  these differences we would expect x-ray and neutron powder-diffraction 
patterns to be very different. Figure 12 shows idealized x-ray and neutron patterns 
calculated for MgTiOs, the primary constituent of the mineral geikielite. The patterns 
were generated for essentially identical diffractometer experiments (impossible in real 
life) but are startlingly different. In fact, the strongest peak in the x-ray pattern (at 
about 32') is completely absent in the neutron pattern! The reason for the extreme 
difference between the two patterns lies in the scattering factors for titanium, mag- 
nesium, and oxygen for x-rays and neutrons. The x-ray scattering factors are simply 
proportional to the atomic number; thus fri > f~~ > fo. However, the neutron scatter- 
ing length of titanium is negative and that of oxygen is only slightly larger than that 
of magnesium, or bo > > 0 > brr Therefore the neutron structure factor for 
each reflection is very different from the x-ray structure factor, and the peak heights 
in the two powder-diffraction patterns are very different. 

The complementarity of x-ray and neutron powder patterns then eliminates one 
of the most basic problems in crystal-structure analysis. Because the complex na- 
ture of the structure factors is lost in any diffraction measurement and the directional 

X-RAY SCATTERING FACTORS 

Fig. 11. X-ray scattering factors for the atoms 

0, Mg, Ti, Fe, and Co. The gray curve labeled 

c o  gives the scattering factor of Co when the 

energy of the Incident x rays is a few eV below 

the K absorption edge of Co. At this energy, 

anomalous dispersion reduces the scattering 

factor by about 6 electrons at ail Q. 
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DIFFERENCES BETWEEN X-RAY AND 
NEUTRON POWDER PATTERNS 

Fig. 12. A comparison of simulated x-ray 

and neutron powder patterns for MgTi03 at a 

wavelength of 1.54 A. The neutron scattering 

lengths of Mg, Ti, and 0 are very different 

from their x-ray scattering factors, so peaks 

that are prominent in one pattern are small 

or even invisible in the other. Thus the two 

patterns give different information about the 

structure of the crystal. 

character of reciprocal space also is lost in a powder-diffraction experiment, the 
Rietveld refinement of a single powder pattern may not yield a unique answer. Clearly, 
if a crystal-structure model of atom positions, etc., produces calculated patterns that 
match both a neutron powder pattern and an x-ray powder pattern, that model is 
more likely to be unique (and correct). To capitalize on this notion we have devel- 
oped a computer program that will perform a combined x-ray and neutron Rietveld 
refinement of a crystal structure. The remainder of the article presents some applica- 
tions of this approach. 

(a) Neutron Powder Pattern (b) X-ray Powder Pattern 

40 

29 (degrees) 29 (degrees) 

Examples of Combined Rietveld Refinements 

One of the most difficult structural problems is to determine the identity of the 
atoms that occupy a particular site within a crystal structure. Generally an atom is 
identified by its scattering power relative to the other atoms in the structure. In addi- 
tion, the distances between it and its nearest neighbors also help in this identification 
process. The large body of structural work in the literature provides the expected in- 
teratomic distances for a particular pair of atoms. The problem becomes much more 
difficult, however, when more than one kind of atom can occupy a particular site. 

The 123 High-Temperature Superconductor. Our first example of an atom- 
identification problem concerns the high-Tc 123 superconductor YBa2Cu307_.c. This 
material had been investigated at great length by many groups throughout the world, 
and its structure had been established with little ambiguity within a few months of its 
discovery by Chu and coworkers at the University of Houston. Almost all structural 
results came from Rietveld refinements of neutron powder-diffraction data obtained 
at either reactor or spallation sources, and the atom identities were assigned largely 
by analogy to other structures as well as by their scattering powers. By unfortunate 
coincidence the neutron scattering lengths of yttrium and copper are virtually iden- 
tical, leaving open the possibilities that the assignments of these two atom locations 
were in fact reversed or that each site was sometimes occupied by yttrium and some- 
times by copper. Either case would have considerable impact on any theory proposed 
to explain the superconductivity. However, the x-ray scattering factors for these two 
atoms are very different, and by combining some x-ray powder data with the neutron 
data one can easily resolve this ambiguity. 
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Here at LANSCE we performed both time-of-flight neutron and x-ray powder- 
diffraction experiments, collecting six powder patterns for this material The entire set, 
comprising about 25,000 data points, was subjected to a combined Rietveld refine- 
ment involving approximately 120 adjustable parameters. These parameters included 
the 33 needed to describe the crystal structure of Y B ~ ~ C U ~ O ~ _ ~ ,  namely, atomic po- 
sitions, fractional occupancies, thermal parameters, and lattice parameters. The rest 
characterized details of the powder-diffraction patterns and included coefficients for 
the background, the peak shapes, and intensity correction factors as well as the six 
scaling factors. The resulting structure, shown in Fig. 13, was dramatically more pre- 
cise than any of the previous single-measurement results and satisfactorily resolved 
the metal-site occupancy issue. We found no evidence of any interchange between 
the metal atoms on their respective sites. Our result had been expected from crystal- 
chemistry considerations based on comparison of interatomic distances and ionic 
radii, but this work provided a clear and unambiguous determination. 

Vanadium-Doped Iron-Cobalt Alloy. The atom-identification problem in our sec- 
ond example is considerably more difficult. The alloy FeCo is well known as an ex- 
cellent soft ferromagnet with a high saturation magnetization and low permeability 
and is of great use commercially. To improve its machinability, a small amount of 
vanadium (about 2%) is added to the alloy. This alloy is also a well-known exam- 
ple of a second-order 0-brass transition: At high temperatures the two metals occupy 
sites of the body-centered cubic structure at random, but below 720Â° the alloy or- 
ders so that atoms of the two metals tend to occupy alternate sites (Fig. 14). It had 
been presumed that in the low-temperature phase the vanadium atoms randomly oc- 

A HIGH-T- SUPERCONDUCTOR 

Fig. 13. A perspective drawing of the structure 

of YBaaCu307-y as deduced from a combined 

x-ray and neutron Rietveld refinement. The 

ellipsoids represent the extent of 99% of 

the atomic thermal motion. The Cu and 0 

atoms are labeled with numbers to distinguish 

inequivalent locations. Combined x-ray 

and neutron data proved that there is no 

interchange between the Cu atoms at these 

sites and the Y atoms at the site in the middle 

of the figure. 
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ORDER-DISORDER TRANSITION 
IN THE ALLOY FeCo 

Fig. 14. A schematic representation of the 

/3-brass transition In FeCo, the iron-cobalt 

alloy containing equal quantities of Fe and 

Co. In the high-temperature form on the left, 

each site Is occupied at random by either 

Fe or Co. The alloy becomes ordered below 

7 2 0  C to form the structure on the right. 

Each Fe atom is surrounded by Co atoms, just 

as the Co atom in the figure is surrounded by 

Fe atoms. 

cupy either the Fe site or the Co site in the structure, but no definitive determination 
had been attempted. Because the FeICo ordering is incomplete, solution of the prob- 
lem required determining the fraction of the Fe-rich and the Co-rich sites occupied 
by Fe, Co, and V. This is not possible with a single-radiation experiment and is ex- 
tremely difficult with a two-radiation experiment. Conventional x-ray powder data is 
particularly insensitive to the ordering because Fe and Co have essentially the same 
x-ray scattering factors and that for V is only about 15% smaller. In fact the @brass 
transition for this material is virtually invisible to x rays. We resolved this site- 

Above 720Â° Below 720Â° 

distribution problem by collecting neutron time-of-flight and shortwavelength x-ray 
data sets that covered a range of Q sufficient to independently determine the thermal- 
motion parameters. In addition, we performed synchrotron x-ray experiments at Stan- 
ford University. The tunability of synchrotron x-ray radiation allowed us to strongly 
modify the x-ray scattering factors of the three metals by collecting powder data near 
each of their respective K absorption edges. The strong anomalous dispersion re- 
duced the x-ray scattering factor for each metal in turn by about 6 to 8 electrons 
from the dispersionless value given in Fig. 11 and thus provided sufficient contrast 
between that atom and the others. The entire suite of data, consisting of some 18 
powder patterns with a total of about 22,000 data points, was subjected to a com- 
bined Rietveld refinement to determine the fractional occupancies for Fe, Co, and V 
at the two sites. The result clearly showed that the V strongly preferred the Co-rich 
site over the Fe-rich site and that for this particular sample the FeICo ordering was 
8 0 %  These results are not obtainable by any other means. 

T*-Phase High-Temperature Superconductors. Our final example is an extension 
of the idea used for the FeCo alloy. The problem is to determine the site preferences 
of the strontium, lanthanum, and rare-earth ions in the so-called T*-phase supercon- 
ductors. These materials have the general formula Lai.8_xRxSro.2Cu04, where R is 
a rare-earth metal, and all have approximately the same structure. They have been 
synthesized with all the rare earths between Pr and Ho as R. Only those with Sm, 
Eu, and Gd and x E 0.9 form bulk superconductors and then only when annealed 
at high O2 pressures. As shown in Fig. 15, one end of the T-phase unit cell resem- 
bles the K2NiF4-like structure of La2Cu04_x (called the T-phase), the first high-Tc 
material to be discovered (by Bednorz and Miiller). The other end of the unit cell re- 
sembles the structure of the so-called TI superconducting phase, Ce-doped Nd2Cu04. 
Each end has sites for the Sr, La, and R ions; the sites at the T-phase-like end are 
larger than those at the TI-like end. Consideration of the various atomic radii and 
the metal-oxygen distances for the two types of sites had led to the assumption that 
the larger ions (s?+ and La3+) occupy the larger T-phase sites, whereas the smaller 
rare-earth ions and the remaining La3+ occupy the smaller TI-phase sites. We ex- 
amined the superconductor L ~ ~ . ~ ~ ~ s ~ ~ . ~ S ~ ~ . ~ C ~ O ~  with neutrons at LANSCE and 
with synchrotron radiation at the National Synchrotron Light Source at Brookhaven 
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National Laboratory. We tuned the synchrotron radiation to absorption edges of La, 
Sm, and Sr to sufficiently modify their scattering factors. We also collected a fourth 
x-ray data set at a wavelength far from any edges. We found that the ordering exists 
but is incomplete: About 10% of the Sm3+ ions appear on the larger T site, presum- 
ably because the ions are nearly the same size, with a Sm3+/~a3+ ionic-radius ratio of 
0.935. We also examined another superconductor, Lao.9Gdo,9Sro.2Cu04, in which the 
ions are of more disparate sizes ( ~ d ^ / ~ a ~ +  = 0.919). The strong absorption by Gd 
precluded collection of a neutron powder pattern, but the four x-ray data sets were 

T Phase 

sufficient to unambiguously determine the two site distributions for the three kinds 
of atoms. In this case the ions were well segregated into the two sites by their size. 
Since the two materials have similar superconductivity properties, this ordering evi- 
dently has little effect on the superconductivity. 

Conclusion 

As one can see from this discussion, the science of powder diffraction has come 
a long way from its beginnings as a largely analytical tool. The Rietveld refinement 
technique has enabled the determination of crystal structures of considerable com- 
plexity and in fact was the first to accurately reveal the structures of the supercon- 
ducting copper oxides. The power of this method can be further enhanced by proper 
combination of diffraction data from several radiation sources to improve the inter- 
atomic contrast and eliminate the ambiguities in powder structure refinements. i 
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T* Phase 

* - P H A S E  SUPERCONDUCTOR 

Fig. 15. The structure of the T*-phase 

superconductor (right) combines those of 

the f and T phases, two other structures 

of M2Cu04 (where M can be a lanthanide 

element or Sr in the compounds of interest 

for superconductivity). The f phase (left) has 

Ce-doped Nd on the M sites (the parentheses 

around the "Ce" symbol indicate that the 

amount of Ce is much less than the amount of 

Nd). The T phase (middle) has larger sites for 

M, which are occupied by Sr-doped La. The 

T* phase has La, Sr, and Gd on the M sites. 

The larger La and Sr Ions occupy the sites In 

the top half of the unit cell, which are identical 

to those in the T phase. The smaller Gd (dark 

gray) ions and the rest of the La occupy the 

smaller T' sites in the bottom half. 
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Crystal Symmetry Groups 

s ymmetry plays an important role 
in crystallography. The ways in 
which atoms and molecules are 

arranged within a unit cell and unit cells 
repeat within a crystal are governed by 
symmetry rules. In ordinary life our 
first perception of symmetry is what 
is known as mirror symmetry. Our 
bodies have, to a good approximation, 
mirror symmetry in which our right side 
is matched by our left as if a mirror 
passed along the central axis of our 
bodies. Our hands illustrate this most 
vividly; so much so that the image is 
carded over to crystallography when 
one speaks of a molecule as being either 
"right9'- or "left"- handed. Those of us 
who live in an old-fashioned duplex 
will also recognize that such houses are 
built with mirror symmetry so that the 
arrangement of the rooms, hallways, and 
doors are disposed about an imaginary 
mirror passing through the common 
wall between the two halves of the 
house. There are many other examples 
of this kind of mirror symmetry in 
ordinary life. We can also see more 
complex symmetry in the patterns 
around us. It can be found in wallpaper 
patterns, floor-tile arrays, cloth designs, 
flowers, and mineral crystals. The basic 
mathematics of symmetry also applies 
to music, dance (particularly folk and 
square dance), and even the operations 
needed to solve Rubik's cube. 

The rules that govern symmetry are 
found in the mathematics of group the- 
ory. Group theory addresses the way in 
which a certain collection of mathemat- 
ical "objects" are related to each other. 
For example, consider all the positive 
and negative integers and zero. They 
can constitute a group because under 
certain circumstances the relationships 

rational numbers is a group under 
multiplication, and both it and the 
integer group already discussed are 
examples of infinite groups because 
they each contain an infinite number 
of elements. 

between the integers obey the rules of In the case of a symmetry group, 
group theory: an element is the operation needed to 

There must be defined a procedure for 
combining two elements of the group 
to form a third. For the integers one 
can choose the addition operation so 
that a + b = c is the operation to be 
performed and a ,  b, and c are always 
elements of the group. 
There exists an element of the group, 
called the identity element and de- 
noted I, that combines with any other 
element to give the second one un- 
changed. In the case of the integers, 
the identity element is zero because 
any integer plus zero gives that inte- 
ger (a + 0 = a). 
For every element of the group, there 
exists another element that combines 
with the first to give the identity 
element; these are known as inverse 
elements. The negative integers 
constitute the inverses of the positive 
integers because their pairwise sums 
all equal zero, the identity element 
(a + (-a) = 0). 
Group operations in sequence obey 
the associative law. For addition of 
integers this means that (a + b) + c = 
a+(b+c). Notice that the commutative 
law, a +b = b +a ,  is not required even 
though it is true for this particular 
group. 
You might be tempted to say that the 

positive integers, when related by mul- 
tiplication (a x b = c), also constitute 
a group with the identity element now 
being one (a x 1 = a). In fact, the pos- 
itive integers do not constitute a group 
under these conditions because, to obey 
the group-theory rules, the noninteger 
inverses ( l l a )  as well as all the ratio- 
nal fractions (b/a) would have to be 
included. The expanded set of positive 

produce one object from another. For 
example, a mirror operation takes an 
object in one location and produces 
another of the opposite hand located 
such that the mirror doing the operation 
is equidistant between them (Fig. 1). 
These manipulations are usually called 
symmetry operations. They are com- 
bined by applying them to an object se- 

THE MIRROR SYMMETRY OPERATION 

Fig. 1. A pair of left- and right-"footed" boots 
illustrates the mirror-plane symmetry operation. 
The right boot can be positioned identically 
on the left boot by reflection through a mirror 
between them and vice versa. 

quentially. For example, doing a mirror 
operation twice on a right-handed object 
will, with the first operation, move it to 
the left-handed position, and with the 
second operation, place it back on its 
original right-handed position. In fact, 
applying a mirror operation twice in 
succession is equivalent to the identity 
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operation, so that a mirror operation is 
its own inverse. 

The two operations, mirror and iden- 
tity, obey the four rules of group theory, 
and thus constitute one of the simplest 
symmetry groups. A mathematical rep- 
resentation of these operations is 

m 1  = m and 

Further, a "multiplication table" 
between these two operations can be set 
up to show the products that any pair of 
symmetry operations gives in this finite 
group (Fig. 2). 

There are three types of symmetry 
operations in crystallography. The sim- 
plest type is the set of translation oper- 
ations needed to fill a two-dimensional 
infinite plane or a three-dimensional in- 
finite space. These operations form a 
group by themselves and have essen- 
tially the same characteristics as the 
example group of integers discussed 
above. The difference is that the trans- 
lation group has two or three sets of 
integers depending on whether a two- 
dimensional plane or a three-dimen- 
sional space is filled. These translation 
operations make the concept of a unit 
cell possible, because once the unit cell 
for a crystal is specified, it takes only 
the right combination of translation op- 
erations to construct the full crystal lat- 
tice. 

There is also a type of translation 
operation that relates objects within 
a unit cell so that the same objects 
are found at coordinates that are half 
multiples of unit-cell distances along 
two or three of the axes. These last 
operations are, for example, responsible 
for the face- and body-centered lattices 
found in three dimensions (Fig. 3). The 
possible combinations of this full set of 
translations for plane- and space-filling 
arrays (along with the restrictions on the 
rotation-symmetry operations that will 

be discussed next) gives only five possi- 
ble plane lattices and fourteen possible 
space lattices (Fig. 3). 

The second type of crystallographic 
symmetry is rotation. For it to be a 
valid symmetry operation, however, the 
rotation angle 6 must be an integer divi- 
sor of 360 degrees, that is, 6 = 360/n, 
where n is an integer. The rotation- 
symmetry operations will then all be 
multiples of this rotation angle. For ex- 
ample, if n = 6 the rotation angle is 
60 degrees and the operations can be 
represented by the unique set 'C6, 'c6, 
'c6 (= '~2) ,  ̂c6, 'c6, and '(26 (= I) in 
which the subscript gives the fraction of 

A FINITE SYMMETRY GROUP 

Fig. 2. This example of a simple, finite group 
obeying all the rules of group symmetry 
consists solely of the identity element, I ,  
and the mirror-plane symmetry operation, m. 
The multiplication table shown above for the 
group gives the products for any palrwlse 
application of the two symmetry operations. 

a full circle for each operation (here 
116) and the superscript gives the mul- 
tiple of 60 degrees used for the rotation 
(Fig. 4). Because 6 ~ 6  is the identity 
operation, these six rotation operations 
constitute a group, symbolized by C6. 

If the symmetry is local with no 
translation component, then the integer 
n can take on any value from one to 
infinity. An object that has the extreme 
case of Coo symmetry is a bowling pin, 
which an infinitesimally small rotation 
leaves looking the same (ignoring any 
painted design). However, when the 
rotation symmetry is part of a plane- or 
space-filling symmetry with translation 
operators, only five different rotation 
angles (n = 1, 2, 3, 4, or 6) can be 
used. Replication of a unit cell with 
a rotation symmetry other than these 
cannot fill a plane surface or three- 
dimensional space without leaving voids 
or having overlapping regions. The 
situation is more complicated in the 
three-dimensional case because a unit 
cell may also have different rotation 
symmetry in different directions. Many 
different groups result from the various 
combinations of these rotations. 

An extension to the concept of ro- 
tation symmetry is to include in each 
rotation operator a translation compo- 
nent (Fig. 5). The resulting objects are 
helical or screwlike; hence, these oper- 
ations are called screw rotations. These 
symmetry operations are most prevalent 
in crystal lattices in which the unit-cell 
repeat requirement means that the trans- 
lation operations have the same integer 
fraction, or some simple multiple, as the 
rotation operations. For example, the 
screw rotation 61 describes an opera- 
tion in which the rotation of 60 degrees 
is accompanied by a translation of 116 
of the unit cell along the rotation axis. 
The 64 screw rotation has the same 60- 
degree rotation but this time is accom- 
panied by a translation of 416 of the unit 
cell along the axis. A sufficient num- 
ber of these is superimposed to give the 
required unit-cell translation (Fig. 5), 
and the resulting arrangement is differ- 
ent from that obtained with a 61 screw 
rotation. 

The one facet common to the trans- 
lation, rotation, and screw operations is 
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THE BRAVAIS SPACE LATTICES 

Fig. 3. The fourteen unit cells depicted above 

represent the only possible ways that space 

can be filled without gaps or overlaps between 

cells, that is, consonant with the restrictions 

of translation and rotation symmetry. The 

cubic cells at the top all have three orthogonal 

sides of equal length; the body-centered (1) 

and face-centered cubic cells (F )  cannot be 
fully specified without also using translation 

operations in terms of half-cell distances. The 

tetragonal and orthorhombic cells also have 

sides that are mutually orthogonal, but either 

one side differs in length from the other two 

sides (tetragonal) or all three sides differ in 

length (orthorhombic). The monoclinic and 

triclinic cells have three unequal lengths but 

now either one angle (monoclinic) or all three 

angles (triclinic) between the sides do not 

equal 90 degrees. The rhombohedra1 cell can 

be thought of as a cubic cell that has been 

stretched or squeezed along a diagonal: the 

three sides are equal but the three angles, 

although equal, are not 90 degrees. The 

hexagonal cell has two angles of 90 degrees 

and one of 120 degrees; only two of its three 

sides are equal. 

that none of these change the handed- 
ness of an object, and changing hand- 
edness is the major feature of the third 
type of crystallographic symmetry. We 
have already mentioned the mirror- 
symmetry operation that relates right- 
and left-handed objects across a plane. 
A similar operation is inversion (Fig. 6) 
in which right- and left-handed ob- 
jects are arranged on opposite sides 
of a point, called an inversion center. 
The presence of an inversion center in 
a crystal is one of the primary classi- 
fication features for crystal structures: 
such crystal structures are centrosymmet- 
ric. An example of the importance of 
inversion centers is that almost all bio- 
logically important molecules (proteins, 
amino acids, et cetera) do not have a 
self-contained inversion center and exist 

Cubic P Cubic I Cubic F 

Tetragonal P Tetragonal / 

Orthorhombic P Orthorhombic C Orthorhombic I 

Monoclinic P 

Rhombohedral 

Monoclinic C 

Orthorhombic F 

Triclinic P 

Trigonal and Hexagonal P 

in nature only in one-handed forms. screw operations, mirror reflection can 
Thus, they always crystallize in noncen- be combined with a fractional transla- 
trosyrnrnetric crystal structures because tion (always one-half of the unit cell) 
the other-handed molecules do not exist. to form a new operation (Fig. 7). This 

In analogy to the operations combin- is known as a glide operation, and the 
ing rotations with translations to form mirror part of the operation occurs at 
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Axis of Rotation 

ROTATION OPERATIONS 

Fig. 4. The C6 rotation symmetry group 

consists of all the rotations about an axis 
a that carry an object through angles that 
are multiples of 60 degrees. Two of the 

1 operations in the symmetry group, C6 and 
2 C6, are labeled in the figure; is the 

identity operation that carries the object a full 
360 degrees back into itself. 

a glide plane. Just as for the screw 
operation, glide operations are only 
found in crystal lattices where the 
repetition of translation and reflection 
can extend indefinitely. Similarly, an 
inversion operation can be combined 
with a rotation (Fig. 8). Because this 
operation occurs about a point, however, 
it is found in both isolated objects and 
in extended lattices. 

When these operations are combined 
in ways that form two-dimensional pla- 
nar arrays, only 17 unique plane groups 
are found. With three dimensions, the 
combination of operations gives just 92 
centrosymmetric and 138 noncentrosym- 
metric space groups for a total of 230. 

An additional type of operation worth 
considering is one that in a two-dimen- 
sional plane would, say, change the 
color of the object (see the opening 
figure of the main article). The sim- 
plest case is a "black-white" operator, 

116th , Translation 

Axis of Rotation 

Axis of Rotation 

and such a color-reversal operator can 
also be combined with the other oper- 
ators discussed earlier. An application 
of this type of operation is to describe 
the ordering of magnetic moments found 
in some materials by neutron scatter- 
ing. Frequently, the moments arrange 
themselves in an alternating pattern so 
that every other one is "up" and all the 
others are "down." The symmetry of 
these arrangements can be described 
by including the color-reversal opera- 
tion, which expands the total number 

SCREW ROTATIONS 

Fig. 5. a) The 6i screw rotation is the 
application of a 60-degree rotation about 
a given axis of the unit cell followed by a 
translation along that axis of one-sixth of 
the unit-cell distance. This combination of 
symmetry operations is repeated successively 
along the full length of the unit cell (in the 
figure, the tetrahedrons generated by each 
successive combination of operations are 
numbered consecutively). Note that the 
placement of the tetrahedrons in this figure 
resembles the placement of the tetrahedrons 
for rotation alone (Fig. 4) except that the 
circle has been "stretched out" into an arc 
because of the vertical translation along the 
axis of rotation. After six rotation-translation 
operations, the tetrahedron has returned to its 
original orientation but is translated a full unit 
along one of the cell's axes. b) The 64 screw 
rotation is the same as the 6i screw rotation 
except the translation is now for four-sixths 
(two-thirds) of the unit distance. To fill in the 
whole pattern, the next rotation-translation 
operation (which ends up one-third of the way 
into the next unit distance) and successive 
operations are superimposed on the original 
unit distance. Note that in the figure the 
dashed line has been eliminated (because 
successive operations are superimposed), 
but the tetrahedrons generated by successive 
operations are still numbered consecutively. 
After three of these combined operations, 
the tetrahedron will have moved an integral 
number of unit distances (and thus can be 

pictured at either the bottom or top of the 
figure) but will have rotated only 180 degrees. 
In this manner, the tetrahedron ends up on 
both sides of the axis at each point along 

the way. Once again, after six combined 
operations the tetrahedron has assumed its 
original orientation. 

of space groups to 1728 in 36 Bravais 
lattices. 

Because there is an intimate relation- 
ship between the arrangement of atoms 
found in real space and the pattern of 
structure factors in reciprocal space, 
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INVERSION CENTER 

Fig. 6. An inversion, denoted 1, is 

accomplished by "reflecting" everything 
through a point or "inversion center" between 
the objects. The three dashed lines drawn 
between tips on the tetrahedrons and passing 
through the inversion center illustrate this 
operation. 

the symmetry of real space must have 
counterparts in reciprocal space. How- 
ever, some of the symmetry aspects 
of reciprocal space may at first glance 
be surprising. Unlike crystallographic 
real space, which consists of a multi- 
tude of identical unit cells each with its 
own origin, reciprocal space has just 
a single origin and an infinite array of 
reciprocal-lattice points associated with 
differing and possibly complex num- 
bers (Fh's). Thus, none of the trans- 
lational aspects of the crystallographic 
symmetry can show up in the recipro- 
cal lattice other than in the dimensions 
of the reciprocal lattice itself. How- 
ever, the rotation, mirror, and inversion 
symmetries present in the lattice are 
also present in the pattern of IFh 12's 
on the reciprocal-lattice (that is, in the 
diffraction pattern). For example, the 
intensities and locations of the two- 
dimensional diffraction patterns shown 
in Figs. 4 and 5 in the main article have 
the same rotation and mirror symme- 
tries as the two-dimensional patterns of 
scatterers that generated those patterns. 

What of the other possible symmetry 
elements? A diffraction pattern almost 
always has a center of inversion-an 
inversion center is absent only for a 6 0  Rotation 

noncentrosymmetric crystal contain- 
ing an atom with a complex scattering 
factor. Half-cell translations and screw 
and glide-plane operations are revealed 
by systematic extinctions, that is, cer- 
tain classes of reciprocal-lattice points 
with zero intensity. For example, in the 
diffraction pattern for a face-centered 
cubic lattice, the only points that have 
a nonzero intensity are those for which 
the hkl indices are all even (for exam- 
ple, 422) or all odd (for example, 31 1). 
Likewise, a glide operation whose glide 
plane is perpendicular to the c crystallo 
graphic axis and whose glide direction Axis of Rotation 
is parallel to the a axis causes the points 
with hko indices and odd h to have zero AN INVERSION-ROTATION OPERATION 
intensity (for example, 120, whereas 210 
has nonzero intensity). Systematic extinc- Fig. 8. The 6 symmetry operation is a 

combination of a 6Wegree rotation followed 
by an inversion. Note that the three 

&<,- 
tetrahedrons above the plane are the same 
as the tetrahedrons in Fig. 4 for rotations 
of 0,120, and 240 degrees (that is, I ,  "6, 

/ Translation and c ~ ) .  This happens because performing 

<,Lib 
two successive 6 operations is equivalent 
to performing the operation (or two 

operations). Lines showing the first 
- combination of a 60-degree rotation and 

inversion operation are given on the figure 

/ Plane 
as well as consecutive numbers for the 
successively generated tetrahedrons. 

THE GLIDE OPERATION 

Fig. 7. Here, mirror reflection and translation 

for one-half the unit distance are combined 
to form a glide operation. Note that the 

tetrahedron on the right side of the glide 
plane is the mirror image of the tetrahedrons 
on the left side; however, each tetrahedron is 
displaced a half unit from the last one. 

tions arise because the symmetry opera- 
tion causes all the atoms to scatter with 
destructive interference for particular 
reciprocal-lattice points. 

Thus, by examining both the symme- 
try of a diffraction pattern and the sys- 
tematic extinctions, a crystallographer 
can usually identify one or two possible 
space groups for any crystal. However, 
some ambiguity may remain because 
of cases in which pairs of space groups 
display the same diffraction symmetry 
and systematic extinctions. 
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Crystal Symmetry Groups

s ymmetry plays an important role
in crystallography. The ways in
which atoms and molecules are

arranged within a unit cell and unit cells
repeat within a crystal are governed by
symmetry rules. In ordinary life our
first perception of symmetry is what
is known as mirror symmetry. Our
bodies have, to a good approximation,
mirror symmetry in which our right side
is matched by our left as if a mirror
passed along the central axis of our
bodies. Our hands illustrate this most
vividly; so much so that the image is
carried over to crystallography when
one speaks of a molecule as being either
“right”- or “left”- handed. Those of us
who live in an old-fashioned duplex
will also recognize that such houses are
built with mirror symmetry so that the
arrangement of the rooms, hallways, and
doors are disposed about an imaginary
mirror passing through the common
wall between the two halves of the
house. There are many other examples
of this kind of mirror symmetry in
ordinary life. We can also see more
complex symmetry in the patterns
around us. It can be found in wallpaper
patterns, floor-tile arrays, cloth designs,
flowers, and mineral crystals. The basic
mathematics of symmetry also applies
to music, dance (particularly folk and
square dance), and even the operations
needed to solve Rubik’s cube.

The rules that govern symmetry are
found in the mathematics of group the-
ory. Group theory addresses the way in
which a certain collection of mathemat-
ical “objects” are related to each other.
For example, consider all the positive
and negative integers and zero. They
can constitute a group because under
certain circumstances the relationships

between the integers obey the rules of
group theory:
● There must be defined a procedure for

combining two elements of the group
to form a third. For the integers one
can choose the addition operation so
that a + b = c is the operation to be
performed and u, b, and c are always
elements of the group.

● There exists an element of the group,
called the identity element and de-
noted f, that combines with any other
element to give the second one un-
changed. In the case of the integers,
the identity element is zero because
any integer plus zero gives that inte-
ger (a + O = a).

● For every element of the group, there
exists another element that combines
with the first to give the identity
element; these are known as inverse
elements. The negative integers
constitute the inverses of the positive
integers because their pairwise sums
all equal zero, the identity element
(a + (–a) = 0).

● Group operations in sequence obey
the associative law. For addition of
integers this means that (a + b) + c =
a+(b+c). Notice that the commutative
law, a + b = b + a, is not required even
though it is true for this particular
group.
You might be tempted to say that the

positive integers, when related by mul-
tiplication (a x b = c), also constitute
a group with the identity element now
being one (a x 1 = a). In fact, the pos-
itive integers do not constitute a group
under these conditions because, to obey
the group-theory rules, the noninteger
inverses ( 1 /a) as well as all the ratio-
nal fractions (b/a) would have to be
included. The expanded set of positive

rational numbers is a group under
multiplication, and both it and the
integer group already discussed are
examples of infinite groups because
they each contain an infinite number
of elements.

In the case of a symmetry group,
an element is the operation needed to
produce one object from another. For
example, a mirror operation takes an
object in one location and produces
another of the opposite hand located
such that the mirror doing the operation
is equidistant between them (Fig. 1).
These manipulations are usually called
symmetry operations. They are com-
bined by applying them to an object se-

THE MIRROR SYMMETRY OPERATION

Fig. 1. A pair of left- and right-"footed” boots
Illustrates the mirror-plane symmetry operation.
The right boot can be positioned identically
on the left boot by reflection through a mirror
between them and vice versa.

quentially. For example, doing a mirror
operation twice on a right-handed object
will, with the first operation, move it to
the left-handed position, and with the
second operation, place it back on its
original right-handed position. In fact,
applying a mirror operation twice in
succession is equivalent to the identity

152 Los Alamos Science Summer 1990



X-Ray and Neutron Crystallography

operation, so that a mirror operation is
its own inverse.

The two operations, mirror and iden-
tity, obey the four rules of group theory,
and thus constitute one of the simplest
symmetry groups. A mathematical rep-
resentation of these operations is

m -1 = m a n d

mm
–‘ = mm = 1.

Further, a “multiplication table”
between these two operations can be set
up to show the products that any pair of
symmetry operations gives in this finite
group (Fig. 2).

There are three types of symmetry
operations in crystallography. The sim-
plest type is the set of translation oper-
ations needed to fill a two-dimensional
infinite plane or a three-dimensional in-
finite space. These operations form a
group by themselves and have essen-
tially the same characteristics as the
example group of integers discussed
above. The difference is that the trans-
lation group has two or three sets of
integers depending on whether a two-
dimensional plane or a three-dimen-
sional space is filled. These translation
operations make the concept of a unit
cell possible, because once the unit cell
for a crystal is specified, it takes only
the right combination of translation op-
erations to construct the full crystal lat-
tice.

There is also a type of translation
operation that relates objects within
a unit cell so that the same objects
are found at coordinates that are half
multiples of unit-cell distances along
two or three of the axes. These last
operations are, for example, responsible
for the face- and body-centered lattices
found in three dimensions (Fig. 3). The
possible combinations of this full set of
translations for plane- and space-filling
arrays (along with the restrictions on the
rotation-symmetry operations that will

be discussed next) gives only five possi-
ble plane lattices and fourteen possible
space lattices (Fig. 3).

The second type of crystallographic
symmetry is rotation. For it to be a
valid symmetry operation, however, the

where n is an integer. The rotation-
symmetry operations will then all be
multiples of this rotation angle. For ex-
ample, if n = 6 the rotation angle is
60 degrees and the operations can be
represented by the unique set 1C6, 

2C6,
3C 6 (=

1C z), 
4C 6,

5C 6, and 6C 6 (= I ) in
which the subscript gives the fraction of

A FINITE SYMMETRY GROUP

Fig. 2. This example of a simple, finite group
obeying all the rules of group symmetry
consists solely of the Identity element, 1,
and the mirror-plane symmetry operation, m.
The multiplication table shown above for the
group gives the products for any pairwise
application of the two symmetry operations.

a full circle for each operation (here
1/6) and the superscript gives the mul-
tiple of 60 degrees used for the rotation
(Fig. 4). Because 6C6 is the identity
operation, these six rotation operations
constitute a group, symbolized by C&

If the symmetry is local with no
translation component, then the integer
n can take on any value from one to
infinity. An object that has the extreme

which an infinitesimally small rotation
leaves looking the same (ignoring any
painted design). However, when the
rotation symmetry is part of a plane- or
space-filling symmetry with translation
operators, only five different rotation
angles (n = 1, 2, 3, 4, or 6) can be
used. Replication of a unit cell with
a rotation symmetry other than these
cannot fill a plane surface or three-
dimensional space without leaving voids
or having overlapping regions. The
situation is more complicated in the
three-dimensional case because a unit
cell may also have different rotation
symmetry in different directions. Many
different groups result from the various
combinations of these rotations.

An extension to the concept of ro-
tation symmetry is to include in each
rotation operator a translation compo-
nent (Fig. 5). The resulting objects are
helical or screwlike; hence, these oper-
ations are called screw rotations. These
symmetry operations are most prevalent
in crystal lattices in which the unit-cell
repeat requirement means that the trans-
lation operations have the same integer
fraction, or some simple multiple, as the
rotation operations. For example, the
screw rotation 61 describes an opera-
tion in which the rotation of 60 degrees
is accompanied by a translation of 1/6
of the unit cell along the rotation axis.
The 64 screw rotation has the same 60-
degree rotation but this time is accom-
panied by a translation of 4/6 of the unit
cell along the axis. A sufficient num-
ber of these is superimposed to give the
required unit-cell translation (Fig. 5),
and the resulting arrangement is differ-
ent from that obtained with a 61 screw
rotation.

The one facet common to the trans-
lation, rotation, and screw operations is
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THE BRAVAIS SPACE LATTICES

Fig. 3. The fourteen unit cells depicted above
represent the only possible ways that space
can be filled without gaps or overlaps between
cells, that is, consonant with the restrictions
of translation and rotation symmetry. The
cubic cells at the top all have three orthogonal
sides of equal length; the body-centered (/)
and face-centered cubic cells (F) cannot be
fully specified without also using translation
operations in terms of half-cell distances. The
tetragonal and orthorhombic cells also have
sides that are mutually orthogonal, but either
one side differs in length from the other two
sides (tetragonal) or all three sides differ in
length (orthorhombic). The monoclinic and
triclinic cells have three unequal lengths but
now either one angle (monoclinic) or all three
angles (triclinic) between the sides do not
equal 90 degrees. The rhombohedral cell can
be thought of as a cubic cell that has been
stretched or squeezed along a diagonal: the
three sides are equal but the three angles,
although equal, are not 90 degrees. The
hexagonal cell has two angles of 90 degrees
and one of 120 degrees; only two of its three
sides are equal.

that none of these change the handed-
ness of an object, and changing hand-
edness is the major feature of the third
type of crystallographic symmetry. We
have already mentioned the mirror-
symmetry operation that relates right-
and left-handed objects across a plane.
A similar operation is inversion (Fig. 6)
in which right- and left-handed ob-
jects are arranged on opposite sides
of a point, called an inversion center.
The presence of an inversion center in
a crystal is one of the primary classi-
fication features for crystal structures:
such crystal structures are centrosymmet-
ric. An example of the importance of
inversion centers is that almost all bio-
logically important molecules (proteins,
amino acids, et cetera) do not have a
self-contained inversion center and exist

Orthorhombic P Orthorhombic C Orthorhombic I Orlhorhombic F

Monoclinic P Monoclinic C Triclinic P

Rhombohedral Trigonal and Hexagonal P

in nature only in one-handed forms. screw operations, mirror reflection can
Thus, they always crystallize in noncen- be combined with a fractional transla-
trosymmetric crystal structures because tion (always one-half of the unit cell)
the other-handed molecules do not exist. to form a new operation (Fig. 7). This

In analogy to the operations combin- is known as a glide operation, and the
ing rotations with translations to form mirror part of the operation occurs at
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SCREW ROTATIONS

Axis of Rotation

ROTATION OPERATIONS

Fig. 4. The C6 rotation symmetry group
consists of all the rotations about an axis
a that carry an object through angles that
are multiples of 60 degrees. Two of the
operations in the symmetry group, 1C6 and
2C6, are labeled in the figure; 6C6 is the
identity operation that carries the object a full
360 degrees back into itself.

a glide plane. Just as for the screw
operation, glide operations are only
found in crystal lattices where the
repetition of translation and reflection
can extend indefinitely. Similarly, an
inversion operation can be combined
with a rotation (Fig. 8). Because this
operation occurs about a point, however,
it is found in both isolated objects and
in extended lattices,

When these operations are combined
in ways that form two-dimensional pla-
nar arrays, only 17 unique plane groups
are found. With three dimensions, the
combination of operations gives just 92
centrosymmetric and 138 noncentrosym-
metric space groups for a total of 230.

An additional type of operation worth
considering is one that in a two-dimen-
sional plane would, say, change the
color of the object (see the opening
figure of the main article). The sim-
plest case is a “black-white” operator,

Axis of Rotation

64

Axis of Rotation

and such a color-reversal operator can
also be combined with the other oper-
ators discussed earlier. An application
of this type of operation is to describe
the ordering of magnetic moments found
in some materials by neutron scatter-
ing. Frequently, the moments arrange
themselves in an alternating pattern so
that every other one is “up” and all the
others are “down.” The symmetry of
these arrangements can be described
by including the color-reversal opera-
tion, which expands the total number

Fig. 5. a) The 61 screw rotation is the
application of a 60-degree rotation about
a given axis of the unit cell followed by a
translation along that axis of one-sixth of
the unit-cell distance. This combination of
symmetry operations is repeated successively
along the full length of the unit cell (in the
figure, the tetrahedrons generated by each
successive combination of operations are
numbered consecutively). Note that the
placement of the tetrahedrons in this figure
resembles the placement of the tetrahedrons
for rotation alone (Fig. 4) except that the
circle has been “stretched out” into an arc
because of the vertical translation along the
axis of rotation. After six rotation-translation
operations, the tetrahedron has returned to its
original orientation but is translated a full unit
along one of the cell’s axes. b) The 64 screw
rotation is the same as the 61 screw rotation
except the translation is now for four-sixths
(two-thirds) of the unit distance. To fill in the
whole pattern, the next rotation-translation
operation (which ends up one-third of the way
into the next unit distance) and successive
operations are superimposed on the original
unit distance. Note that in the figure the
dashed line has been eliminated (because
successive operations are superimposed),
but the tetrahedrons generated by successive
operations are still numbered consecutively.
After three of these combined operations,
the tetrahedron will have moved an integral
number of unit distances (and thus can be
pictured at either the bottom or top of the
figure) but will have rotated only 180 degrees.
In this manner, the tetrahedron ends up on
both sides of the axis at each point along
the way. Once again, after six combined
operations the tetrahedron has assumed its
original orientation.

of space groups to 1728 in 36 Bravais
lattices.

Because there is an intimate relation-
ship between the arrangement of atoms
found in real space and the pattern of
structure factors in reciprocal space,
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INVERSION CENTER

Fig. 6.
accomplished by “reflecting” everything
throughs point or “inversion center” between
the objects. The three dashed lines drawn
between tips on the tetrahedrons and passing
through the inversion center illustrate this
operation.

the symmetry of real space must have
counterparts in reciprocal space. How-
ever, some of the symmetry aspects
of reciprocal space may at first glance
be surprising. Unlike crystallographic
real space, which consists of a multi-
tude of identical unit cells each with its
own origin, reciprocal space has just
a single origin and an infinite array of
reciprocal-lattice points associated with
differing and possibly complex num-
bers (Fh ‘s). Thus, none of the trans-
lational aspects of the crystallographic
symmetry can show up in the recipro-
cal lattice other than in the dimensions
of the reciprocal lattice itself. How-
ever, the rotation, mirror, and inversion
symmetries present in the lattice are

on the reciprocal-lattice (that is, in the
diffraction pattern). For example, the
intensities and locations of the two-
dimensional diffraction patterns shown
in Figs. 4 and 5 in the main article have
the same rotation and mirror symme-
tries as the two-dimensional patterns of
scatterers that generated those patterns.

What of the other possible symmetry
elements? A diffraction pattern almost
always has a center of inversion—an
inversion center is absent only for a
noncentrosymmetric crystal contain-
ing an atom with a complex scattering
factor. Half-cell translations and screw
and glide-plane operations are revealed
by systematic extinctions, that is, cer-
tain classes of reciprocal-lattice points
with zero intensity. For example, in the
diffraction pattern for a face-centered
cubic lattice, the only points that have
a nonzero intensity are those for which
the hkl indices are all even (for exam-
ple, 422) or all odd (for example, 31 1).
Likewise, a glide operation whose glide
plane is perpendicular to the c crystallo-
graphic axis and whose glide direction
is parallel to the a axis causes the points
with hkO indices and odd h to have zero
intensity (for example, 120, whereas 210
has nonzero intensity). Systematic extinc-

THE GLIDE OPERATION

Fig. 7. Here, mirror reflection and translation
for one-half the unit distance are combined
to form a glide operation. Note that the
tetrahedron on the right side of the glide
plane Is the mirror Image of the tetrahedrons
on the left aide; however, each tetrahedron is
displaced a half unit from the last one.

Axis of Rotation

AN INVERSION-ROTATION OPERATION

combination of s 60-degree rotation followed
by an inversion. Note that the three
tetrahedrons above the plane are the same
as the tetrahedrons in Fig. 4 for rotations
of O, 120, and 240 degrees (that is, I, 2C6,
and 4C6). This happens because performing
two successive 6 operations is equivalent
to performing the 2C6 operation (or two
1C6 operations). Lines showing the first
combination of a 60-degree rotation and
inversion operation are given on the figure
as well as consecutive numbers for the
successively generated tetrahedrons.

tions arise because the symmetry opera-
tion causes all the atoms to scatter with
destructive interference for particular
reciprocal-lattice points.

Thus, by examining both the symme-
try of a diffraction pattern and the sys-
tematic extinctions, a crystallographer
can usually identify one or two possible
space groups for any crystal. However,
some ambiguity may remain because
of cases in which pairs of space groups
display the same diffraction symmetry
and systematic extinctions. ■
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A fanciful view of an atom in super- 
fluid helium-4 (blue) being struck by a 
neutron (red) and then bouncing off the 

interaction potentials of neighboring 
atoms. These so-called final-state 

interactions prevent direct observation 
of the Bose condensate~the exotic state 

of matter whose existence was proposed in 
1938 by Fritz London as an explanation of 
superfluidity. Although the rune above, by 

E. C. Svensson, appeared in 1983 (in 75th 
Jubilee Conference on Helium-41, its 
claim was only recently confirmed. 



superfluid helium and neutron scattering 
- 

a new chapter in the 
CONDENSATE SAGA 

by Richard N.  Silver 

T 
he unusual properties of helium at temperatures near absolute zero have been 
an endless source of fascination for condensed-matter physicists. Helium is 
the only atomic system that avoids crystallization and instead remains a fluid 

to arbitrarily low temperature. Moreover, when a liquid composed of ^He atoms is 
cooled below a critical temperature TA (equal to 2.17 kelvins at atmospheric pres- 
sure), it passes from a normal-fluid state, so called because its properties are similar 
to those of other fluids, to a superfluid state, having dramatically different properties. 
A normal fluid possesses a finite viscosity, or resistance to shear flow, and therefore 
current flows dissipate in the absence of a driving force. A normal fluid also has a fi- 
nite thermal conductivity, or the ability to support temperature gradients. In contrast, 
a superfluid has a zero viscosity and an infinite thermal conductivity. In a superfluid 
quantized currents persist indefinitely, and temperature fluctuations propagate like 
waves. In addition, numerous other properties of superfluids lie outside the realm of 
common experience. Finally, unlike the behavior of normal fluids, which can usually 
be described in terms of classical mechanics, the exotic behavior of liquid helium be- 
low TA requires a quantum-mechanical description. For that reason superfluid helium 
is called a quantum fluid. 

In this article we focus on a single question: What quantum features of helium 
atoms at temperatures below TA might explain the transition from normal-fluid to 
superfluid behavior? We shall eventually arrive at a clear answer, but the route we 
must follow to find it is circuitous. Along the way we will explore much of the his- 
tory of and current research on quantum fluids and learn about related research in 
many areas of modem physics. We will see that the high fluxes of epithermal neu- 
trons available at pulsed neutron sources, such as those at Argonne and Los Alamos 
National Laboratories, are a powerful tool in addressing our central question. 

An important clue to the answer comes from comparing the behavior of two dif- 
ferent helium fluids, one composed of ' ~ e  atoms and the other of '^He atoms. Both 
isotopic species have identical interatomic interactions, and the difference in their 
masses has a negligible effect on their behavior. Under atmospheric pressure both 
remain fluids to arbitrarily low temperatures. However, ^ ~ e  undergoes a superfluid 
transition at 2.17 kelvins, but 'He does not become a superfluid until below 3 mil- 
likelvins. The transition temperatures of the two species differ by three orders of 
magnitude! 

The origin of that great difference can be traced to the spin-statistics relation, 
the fundamental principle of quantum mechanics that distinguishes 'He from ^ ~ e .  
Statistics refers to symmetry properties of the wave function describing a system 
of identical (and therefore indistinguishable) particles. The 'He nucleus, composed 
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of two protons and one neutron, has a spin of i; that is, it has an intrinsic angular 
momentum of $5, where^ is Planck's constant divided by 27r. (Electrons also have 
a spin of 4, but the spins of the two electrons in each helium atom are antiparallel 
and thus contribute a total spin of zero.) According to the spin-statistics relation, a 
system of identical particles having half-integer spin must be described by a many- 
particle wave function that is a completely antisymmetric function of the particle po- 
sitions. Such a function is zero when two particles have the same position. There- 
fore, since the probability of finding particles at given positions is the square of the 
wave function, the spin-statistics relation alone requires particles with half-integer 
spin to avoid one another even in the absence of any repulsive potential between 
them. The antisymmetry of the wave function is thus the origin of the famous Pauli 
exclusion principle, which requires that no two electrons in an atom occupy the same 
atomic orbital. (Particles with half-integer spin are termed fermions, and the spin- 
statistics relation for fermions is called Fermi-Dirac statistics.) 

The converse is true for 'He atoms. The 'He nucleus, composed of two protons 
and two neutrons, has a spin of 0, and so also does the 'He atom. According to the 
same spin-statistics relation, a system of identical particles having integer spin must 
be described by a many-particle wave function that is a completely symmetric func- 
tion of the particle positions. A completely symmetric function is larger when two 
particles occupy the same position. Hence, the spin-statistics relation requires integer- 
spin particles, such as spin-0 ' ~ e  atoms and spin-1 photons, to be attracted to one 
another even in the absence of any attractive potential between them. (Particles with 
integer spin are termed bosons, and the spin-statistics relation for bosons is called 
Bose-Einstein statistics.) 

Although the spin-statistics relation applies to the microscopic behavior of a sys- 
tem of identical particles, its effects are visible at the human, or macroscopic, level 
of perception. For example, if all the electrons in an atom could occupy the lowest 
atomic orbital, then the universe as we know it would collapse. Fortunately elec- 
trons are fermions, and such a collapse is forbidden by the Pauli exclusion princi- 
ple. An outstanding macroscopic effect for bosons is the phenomenon of lasing. A 
laser can produce an intense beam of coherent light because the photons emitted by 
a large population of excited atoms are allowed, and indeed prefer, to enter the same 
quantum-mechanical state. 

In 1938 Fritz London proposed that the superfluidity observed in liquid ' ~ e  ear- 
lier that year was just such a macroscopic manifestation of the symmetry requirement 
for the wave function of a system of identical bosons, an insight that preceded the 
invention of lasers by twenty-seven years. He reasoned by analogy with the theoret- 
ically predicted behavior of a non-interacting gas of spin-0 particles obeying Bose- 
Einstein statistics. His argument is given in terms of the momentum wave function 
of the system, which is simply the Fourier transform of the position wave function 
mentioned above. (Position and momentum are expressed mathematically in quantum 
mechanics as Fourier conjugate variables that obey the Heisenberg uncertainty princi- 
ple, A p h  <^fi, where Ap and Ax are the uncertainties in momentum and position. 

Consider a system of identical atoms inside a box of finite size. The probabil- 
ity that an atom has momentum of magnitude p in, say, the x direction is termed the 
momentum distribution, n(p). For all systems of atoms obeying classical mechanics, 
n(p) is given by a Maxwell-Boltzmann distribution, which is a Gaussian function of 
width Ap = dmkv,T in each direction. Here m is the atomic mass, ky is Boltzmann's 
constant, and T is temperature. This classical-mechanical momentum distribution is 
independent of any interactions between the atoms and yields an average kinetic, or 
thermal, energy (oc (Ap)2/2m) per atom of $ k g .  Thus, all liquids that obey classi- 
cal mechanics must crystallize as the temperature is lowered because the potential en- 
ergy gained by the localization of atoms at lattice sites overcomes the kinetic energy 
due to thermal motion. That 'He and ^ ~ e  require a quantum description is already 
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No Bose Condensation at T>Tc 

Bose Condensation at T e  Tc 

Delta-Function Contribution 
from Bose Condensate 

k (A-I ) 

evident from the fact that they remain liquid all the way down to absolute zero. 
In quantum mechanics the momenta of atoms in a finite-sized box are quantized 

in integer multiples of R L 1 ,  where L is a dimension of the box. This quantization is 
a consequence of the requirement that the-wave function of an atom must be zero at 
the boundaries of the box and therefore must have an integral number of nodes. Thus 
the momentum distribution for the system is discontinuous (unlike the continuous 
Maxwell-Boltzman distribution of classical systems) and becomes continuous only for 
a box of infinite size. 

Now consider the momentum distribution for a non-interacting (ideal) gas of 
spin-0 atoms. At high temperature the atoms are thermally excited, and the proba- 
bility of an atom being in any particular momentum state is inversely proportional 
to the size of the system ( L ~ )  and proportional to a Maxwell-Boltzmann distribution. 
However, as the temperature is reduced, the preference of bosons for occupying the 
same momentum state causes deviations from the Maxwell-Boltzmann distribution. 
As the temperature is further reduced below a critical Bose-condensation temperature, 
a significant fraction of the atoms begin to occupy the lowest (or zero) momentum 
state. The fraction, no, is called the Bose-condensate fraction, and its value is inde- 
pendent of the size of the system. In the momentum distribution no shows up as a 
delta function, of weight no, at p = 0. The width Ap of the momentum distribution 
for the remainder of the atoms is on the order of VmkpT and goes to zero at zero 
temperature. On the other hand, no approaches one as the temperature approaches 
zero; that is, the entire system becomes a Bose condensate. Figure 1 shows plots of 
k2n(k) versus k for a system of non-interacting bosons at various temperatures. (In 
this article momentum p and the wave vector k = p/K are used interchangeably. The 

natural unit for wave-vector magnitudes is the inverse angstrom, A ' . )  Figure 2 is a 
plot of the Bose-condensate fraction no versus temperature. 

London reasoned that the superfluidity observed in ' ~ e  was a macroscopic con- 
sequence of the microscopic Bose condensation of ' ~ e  atoms into the zero- 

MOMENTUM DISTRIBUTIONS 
IN AN IDEAL BOSE GAS 

Fig. 1. Shown here are plots, at various 

temperatures above and below the Bose- 

condensation temperature Tc, of k2n(k)/2x 2 

versus k,  where n(k) is the momentum distri- 

bution of an ideal Bose gas of density p. As 

the temperature decreases toward T,., k2n(k) 

deviates more and more from the classical 

prediction of a (Gaussian) Maxwell-Boltzmann 

momentum distribution. At temperatures be- 

low Tc, a nonzero fraction h ( T )  of the bosons 

occupies the zero-momentum state, and n(k) 

includes a delta-function contribution equal 

to no(T)p(2~)36(k). Thus k2n(k) increases 

as k approaches 0 and exhibits a positive 

discontinuity at k = 0. 

BOSE-CONDENSATE FRACTION 
IN AN IDEAL BOSE GAS 

Fig. 2. The Bose-condensate fraction in an 

ideal Bose gas with a density equal to that 
4 

of liquid He increases monotonically from 

0 at its Bose-condensation temperatue (3.3 

kelvins) to 1 at absolute zero. 
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DEPARTURE OF LIQUID ' ~ e  
FROM IDEAL-GAS BEHAVIOR 

Fig. 3. (a) The potential V(r )  for the interaction 

between atoms in liquid "He is steeply repul- 

sive (positive) at interatomic distances below 

about 2.6 angstroms. At larger distances van 

der Waals forces cause the potential to be 

weakly attractive (negative). Such an inter- 

action potential, which differs enormously 

from that of an ideal gas, leads to spatial 
4 correlations between the atoms in liquid He. 

(b) Shown here is the pair-correlation function 

g(r) for superfluid ' ~ e  determined by neutron 

diffraction. It is proportional to the probability 

distribution for finding two atoms of super- 

fluid "He a distance r apart. Comparison of 

g(r) and V(r) reveals that the atoms in the 

superfluid tend to stay in the attractive well 

of the potential, outside its steeply repulsive 

core. 

(a) ^ ~ e - ~ H e  Interaction Potential (b) Superfluid "He Pair-Correlation Function 

momentum state. He pointed out that the Bose-condensation temperature of a sys- 
tem of non-interacting atoms having the same mass and density as 'He is 3.3 kelvins 
and is thus remarkably close to the observed '*He superfluid-transition temperature 
of 2.17 kelvins. London's hypothesis also suggests why liquid 'He behaves so dif- 
ferently from liquid '*He at low temperature: The spin-statistics relation for ferrnions 
forbids Bose condensation of 'He atoms. London's analogy between 'He and a sys- 
tem of non-interacting bosons is imperfect because the atoms in liquid helium inter- 
act strongly. Such interatomic interactions have a significant effect on the momen- 
tum distribution of a quantum system. As shown in Fig. 3a, the interaction poten- 
tial between 'He atoms is strongly repulsive at interatomic distances less than 2.5 
angstroms and weakly (van der Waals) attractive at larger distances. Therefore the 
atoms tend to stay a minimum of 2.5 angstroms apart. Indeed, as shown in Fig. 3b, 
the pair-correlation function, g(r), for liquid 'He (which is proportional to the prob- 
ability distribution for finding two 'He atoms a distance r apart) has a maximum at 
about 3.5 angstroms. Now, since liquid helium is a quantum system obeying the 
Heisenberg uncertainty principle, the correlation in the positions of the the atoms 
must result in a spread in the probability of their occupying any of the momentum 
states. In particular, the tendency of 'He atoms to stay at least 2.5 angstroms apart 
results in an expected width of the momentum distribution of Ak = (2d2.5)  kl, 
or about 2 A ' .  Thus, even at absolute zero interacting atoms have a finite kinetic 
energy of (H^k)2/2rn, which is termed the zero-point energy. The uncertainty in the 
atom's momentum increases its kinetic energy above the classical value at any tem- 
perature. 

For most atomic systems the zero-point energy is too small to prevent crystal- 
lization at low temperatures. The only exceptions are 'He and ' ~ e .  At pressures 
below tens of atmospheres, helium atoms tend to sit in the shallow potential well 
created by the weakly attractive van der Waals force, but their comparatively low 
masses result in zero-point kinetic energies that are higher than the van der Waals po- 
tential energy. Only at very high densities are the atoms close enough that their po- 
tential energy due to the steeply repulsive part of the potential exceeds the zero-point 
energy and produces crystallization. Thus the low-temperature phase diagram for ' ~ e  
(Fig. 4) shows crystallization above 25 atmospheres. At lower pressures *He remains 
a liquid down to absolute zero. Moreover, along the so-called A line 'He undergoes 
the phase transition from the normal to the superfluid state. 

The really daring aspect of London's hypothesis was to propose that, despite the 
strong interactions between 'He atoms, which tend to broaden the momentum distri- 
bution, the superfluid should contain a non-negligible fraction of atoms in the zero- 
momentum state. The remaining atoms should have a broad momentum distribution 
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that remains wide (about 2 A ' )  even at zero temperature because of zero-point mo- 
tion. (Superfluid flow is attributed to Bose condensation into a state other that the 
zero-momentum state. Coherent interactions among the ^He atoms stabilize the flow 
against scattering processes, which tend to dissipate flow in normal fluids.) 

London's hypothesis began what has been called the condensate saga-the story 
of numerous attempts by theorists to calculate the Bose-condensate fraction and by 
experimentalists to measure it. The condensate fraction has been elusive, and the 
saga has had many twists and turns. Both the existence and the size of the Bose- 
condensate fraction in superfluid H e  have remained very controversial subjects. 
Most of the successful theories of superfluid helium (developed by, among others, 
Lev Landau, L. Tisza, and London) do not invoke a many-atom wave function at a 
microscopic level and especially not a Bose condensate. Rather, most of the remark- 
able properties of superfluid helium can be explained by the two-fluid model in which 
a macroscopic wave function extending throughout the sample corresponds to the su- 
perfluid component of the fluid, and elementary excitations out of the superfluid state, 
the so-called phonons and rotons, correspond to the normal component of the fluid. 
At zero temperature all the atoms are condensed into the macroscopic wave function, 
and helium consists entirely of superfluid. As the temperature is raised above zero, 
the number of thermally excited phonons and rotons increases, and they act as a nor- 
mal fluid component. At TA,  where the number of thermally excited elementary ex- 
citations equals the number of atoms in the system, the entire system becomes a nor- 
mal fluid. This two-fluid description can account successfully for many experiments 
on superfluid 'He. Thus establishing a theoretical connection between the two-fluid 
model and the many-atom wave function is unnecessary to successful prediction of 
most macroscopic experiments. However, a goal of microscopic (atomic level) theory 
has been to predict the parameters of the two-fluid model, now obtained by fitting 
the model to macroscopic experiments. Until we achieve such a connection between 
the microscopic and macroscopic theories, we cannot determine no from macroscopic 
experiments. 

Nevertheless, many theorists over the years have spent an enormous effort on 
the microscopic theory of superfluid ' ~ e .  One goal has been to calculate no, and 
indeed the entire momentum distribution, from first principles (ab initio) and the 
measurable interatomic potential. In addition to scientists' gut-level "need-to-know," 
many other factors motivate this enterprise. Helium is arguably the simplest among a 
wide variety of strongly interacting many-body systems currently under intense study 
by condensed-matter physicists. Those systems relate to such fashionable topics as 
high-temperature superconductors, heavy-fermion metals, the quantized Hall effect, 
and so on. Countless theoretical methods developed for and tested on helium have 

PHASE DIAGRAM OF ' ~ e  

Fig. 4. At pressures below 25 atmospheres, the 

zero-point energy of liquid "He is sufficiently 

large to prevent its solidification, even at 

a temperature of absolute zero. The liquid 

phase is separated by the A line into normal- 

fluid and superfluid phases. At atmospheric 

pressure the superfluid-transition temperature 

TA is 2.17 kelvins, which is not much different 

from the Bose-condensation temperature of 

an ideal Bose gas of the same density (3.3 

kelvins). The critical point shown in the phase 

diagram gives the pressure and temperature 

at which the liquid and gas phases of "He 

form one phase. 
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subsequently provided the key to understanding more complex systems. Also, su- 
perfluidity in helium shares many similarities with superconductivity in metals, so 
that work on helium can be directly related to technologically important questions. 
Finally, the microscopic theory of helium, one of the most strongly interacting many- 
body systems, presents a fundamental challenge. 

Progress in ah initio many-body calculations of the properties of liquid helium 
has been dramatic, especially since the advent of supercomputers in the last decade, 
The names of the methods employed are characteristically arcane (variational wave 
function, Green's function Monte Carlo, and path-integral Monte Carlo, for example) 
and reflect their great diversity. Nevertheless, the results of all these methods have 
converged on the conclusion that the Bose-condensate fraction should exist in super- 
fluid '^He but not in the normal fluid and that its value should be about 10 percent 
at Lero temperature. Hence, measurements of no provide a fundamental test of the 
predictive power of modern condensed-matter theory. 

A seminal suggestion made by P. Hohenberg and P. Platzman in 1966 still re- 
mains the best hope for a direct measurement of momentum distributions in liquid 
helium. It involves neutron-scattering experiments at momentum and energy transfers 
sufficiently high that the struck atoms acquire kinetic energies much larger than the 
binding energies in the liquid. Under such conditions (hopefully!) the impulse ap- 
proximation, which approximates the scattering from the many-atom system as the 
sum of scatterings from individual free atoms, is valid, and the observed scattering 
cross section is a direct measure of the momentum distribution in the sample. Anal- 
ogous experiments are of interest in all of modem physics because momentum distri- 
butions are measurable properties of all many-particle wave functions, provided the 
energy and momentum transfers are high enough. X-ray Compton scattering at en- 
ergies on the order of tens of keV can measure electron momentum distributions in 
atoms and solids, electron scattering at a few GeV can measure nucleon momentum 
distributions in nuclei, and electron scattering at hundreds of GeV can measure quark 
momentum distributions in nucleons. Scattering at very high energy transfers relative 
to the binding energies of a system is called deep inelastic scattering. 

The suggestion of Hohenberg and Platzman initiated an effort that has lasted 
more than twenty years and has involved over one hundred experimentalists at reac- 
tor and pulsed neutron sources all over the world. The effort has spawned improve- 
ments in spectrometers and advances in data-analysis procedures. The attempted 
momentum-distribution measurements have used neutrons with energies between 10 
and 1000 meV. Increases in neutron energy have been made in order to come closer 
to the regime in which the impulse approximation is valid. The goal of inferring the 
value of no from the data inevitably involves accounting for instrumental broadening, 
statistical and background uncertainties, and corrections to the impulse approximation 
necessitated by the finite neutron energies available. Although the condensate saga 
through 1987 included many (often conflicting) indirect determinations of no, it did 
not include any direct observation of the delta function in the momentum distribution 
of superfluid ' ^ ~ e  predicted by the London theory. Direct experimental evidence for a 
Bose condensate in superfluid helium was weak. 

This article presents the latest episode in the condensate saga-a recent break- 
through in confirming the existence and size of the Bose-condensate fraction. New 
experiments using the high epithermal flux of a pulsed neutron source are in excellent 
agreement with sophisticated new ab initio calculations of momentum distributions, 
provided that the prediction of the impulse approximation is broadened by final-state 
interactions according to a first-principles theory developed by the author. Experi- 
ment and theory on the momentum distributions of 'He have converged, and both are 
consistent with a condensate fraction of 9.2 percent in the superfluid at zero temper- 
ature. The story of the breakthrough is accompanied by a discussion of its implica- 
tions for the study of other condensed-matter systems. 

Lox Aiurnos Science Summer 1990 



The Condensate Saga 

Neutron Scattering and the Impulse Approximation 

As mentioned above, the best hope for measuring momentum distributions in 
helium is neutron scattering at high momentum and energy tranfers. To understand 
why, let's review what we learn from neutron-scattering experiments (see also "Neu- 
tron Scattering-A Primer" in this issue). The double differential scattering cross 
section, or the scattering per unit solid angle f2 and per unit energy transferees, is 
defined as 

where o[[̂ is the total neutron-scattering cross section of a single helium atom, 
k, and kf are the initial and final neutron wave vectors, the energy transfer hes = 

({^/1mn){k12 - k; ) ,  mn is the neutron mass, ?iQ = 15 1 ki - kf 1 is the momentum trans- 
fer, and S (Q , es) is the dynamic structure factor (also sometimes termed the neutron 
scattering law ). 

As discussed in the primer, S (Q, w) is the Fourier frequency and spatial trans- 
form of the time-dependent pair-correlation function of the liquid. Measurement 
of S (Q,  w) provides a rich variety of information on the properties of quantum flu- 
ids. By the uncertainty principle experiments at Q values smaller than or compara- 
ble to the inverse of the interatomic spacing (that is, at Q < a few A ' )  are sen- 
sitive to the collective behavior of helium atoms. For example, diffraction exper- 
iments, which involve elastic scattering (ki = kf) ,  yield the static structure factor 
S (Q)  = d(fies)S (Q . u). The Fourier transform of S (Q) for ' ~ e  yields the pair- 
correlation function shown in Fig. 3b. And experiments involving inelastic scattering 
(ki =/ kf) at low Q determine the spectrum of elementary excitations (phonons and 
rotons) in ' ^ ~ e .  

On the other hand, inelastic-scattering experiments at Q values much larger than 
a few A '  probe individual atoms rather than collective behavior. That fact led to 
Hohenberg and Platzman's suggestion for using such experiments to measure the mo- 
mentum distributions in helium. They assumed, first, that if the energy transfer is 
large compared to typical binding energies in the condensed phase (which are on the 
order of meV), then the initial binding energy of the atoms could be ignored, and 
second, that if the energy transfer is very large compared to the potential energy of 
the scattered atoms in the condensed phase, then a struck atom in its final state will 
be negligibly affected by the surrounding atoms and may be considered to be a free 
particle. Those assumptions imply that neutron scattering at very high energy and 
momentum transfers may be approximated as scattering from a collection of free he- 
lium atoms with initial momenta pi distributed according to the momentum distribu- 
tion ^(pi) and with final momenta pf = pi +hQ (Fig. 5).  The approximation that the 
neutrons scatter from a collection of free atoms is termed the impulse approximation 
(IA). The dynamic structure factor in the impulse approximation is given by 

where p is the density of the liquid helium, En = p2/2m, m is the mass of the he- 
lium atom, and the delta function is an expression of energy conservation. Note that 
S IA(Q,  w) is normalized so that its integral overdo: is unity at large Q .  

The important feature of the impulse approximation is that it provides the de- 
sired simple relation between the neutron scattering law for helium and its momen- 
tum distribution. But how do we know whether an experiment has been performed 
at conditions for which the impulse approximation is valid? Equation 2 implies that, 
at a given value of Q ,  a plot of the observed S (Q, w )  versus w should have a sin- 
gle peak that is symmetric about the recoil energy of an atom at rest, hrecoll = EQ. 

Neutron 

I 

- - - - - -  
TiQ, 'ha 

\ 

KINEMATICS FOR 
IMPULSE APPROXIMATION 

Fig. 5. According to the impulse approxima- 

tion, neutron scattering from liquid ~e can 

be regarded, at sufficiently high momentum 

and energy transfers, as scattering from 

free atoms. That situation is depicted here 

schematically. Arrows represent the momenta 

of a neutron and a helium atom before and 

after scattering. The dashed line represents 

the momentum KQ and energy Ku transferred 

to the helium atom during the scattering. Mo- 

mentum conservation demands that pf pi + 
f iQ,  where pi and pf are, respectively, the initial 

and final momenta of the helium atom. Be- 

cause the binding energy of the helium atoms 

is ignored in the impulse approximation, the 

difference between the energies of a helium 

atom before and after scattering is simply 

equal to the difference in its kinetic energies 

before and after scattering, (1/2m)($ - n2). 

Furthermore, energy conservation requires 

that (1/2m)(*~ - f t2)  =/Ãˆ(*Ã 
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Moreover, sincehw - E n  + E p  = Fzw -hwrecoil - Q . p i / m ,  the peak width should be 
proportional to Q times the width of the momentum distribution. 

In the presence of a Bose condensate, the initial momentum distribution should 
have the form 

" (p i )  = nop(2~r f0~ f i (~ ) (p i )  + n*(pi) ,  (3) 

where ^ ( p i )  is a three-dimensional delta function and n*(pi )  is a smooth momentum- 
distribution function for the remainder of the atoms. Combining Eqs. 2 and 3 yields 
a unique form for the dynamic structure factor in the impulse approximation: 

where S a Q ,  w )  is the contribution to the scattering law from n*(pi) .  A Bose- 
condensate peak in the momentum distribution should show up as a delta function 
in the observed S ( Q ,  w )  at fiw = Eno, and no should equal the fraction of the integral 
of the observed S ( Q ,  w )  over Fiw contributed by the delta function. It is this simple 
prediction that has motivated the condensate saga, that is, the many attempts to ob- 
serve the condensate by neutron-scattering experiments. 

More generally, the impulse approximation, which assumes the helium atoms 
scatter neutrons as if they are free particles, predicts that the scattering is no longer 
a function of w and Q separately. Rather, the energy-conservation delta function in 
Eq. 2 forces a relationship between w,  Q ,  and k l l ,  the component of an atom's initial 
wave vector parallel to the direction of the momentum transfer: kl l  = ( m / h 2 ~ ) ( F i w  - 
F ^ ~ ~ / 2 m ) .  To express this fact we can introduce a new variable Y ,  first suggested by 
Geoffrev West: 

Then we rewrite S ( Q ,  w )  in terms of a function that depends on Y rather than w: 

Eqations 5 and 6 are essentially redefinitions (since Y is just a dummy variable and 
has not been given a physical interpretation) and are therefore valid whether or not 
the impulse approximation is valid. The quantity J (Y , Q )  is termed the Compton 
profile and was used to plot the results of seminal experiments by A. H. Compton 
and J. DuMond in the 1920s that measured the electron momentum distributions in 
atoms and metals by x-ray scattering at keV energies. Compton and Dumond plotted 
their results in terms of pv, but, because the impulse approximation was valid in their 
experiments, pi1 is identically equal to hY . 

The advantage of expressing scattering laws as Compton profiles is that, in the 
impulse approximation, J ( Y ,  Q )  depends only on Y and not on Q ,  a phenomenon 
we refer to as Y -scaling. In particular the Compton profile for liquid helium in the 
impulse approximation is given by 

Note that the momentum distribution in Eq. 7 depends only on the magnitude of k 
because the liquid is isotropic. If the impulse approximation is valid, then it should 
be possible to extract no and n ( k )  from neutron scattering experiments by direct in- 
version of Eq. 7. 

We will now examine whether conditions for the impulse approximation, which 
implies Y -scaling, have been met experimentally. We will also consider the possibil- 
ity, first suggested by West, that Y -scaling is independent of the validity of the im- 
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(a) Momentum Distributions (b) Compton Profiles 

v Normal Fluid (3.3 K, PIMC) 
Superfluid 

(0 K, GFMC) \ f Normal Fluid 
(3.3 K, PIMC) 

pulse approximation. In other words, even when conditions for the impulse approx- 
imation are not met, the Compton profile may still depend only on Y .  Scaling phe- 
nomena are of intense interest throughout modem physics, for they occur whenever 
the number of variables involved in a measurement on a physical system exceeds the 
number of relevant length or energy scales for the system. Thus, observation of scal- 
ing is indicative of a fundamental simplicity of the physical system being studied. In 
the case of high-energy neutron scattering from helium, the number of relevant vari- 
ables might, in principle, be on the order of the number of atoms in a typical 
sample. Observation of Y -scaling would indicate that the number of relevant vari- 
ables has been reduced to one. In the impulse approximation the relevant variable is 
k l l ,  and it determines the scattering through the momentum distribution. Later when 
we discuss corrections to the impulse approximation due to final-state effects, we will 
present a theory in which the scattering law obeys Y -scaling but Y does not equal kll 
and has an alternative interpretation. 

Theoretical Predictions 

To advance from qualitative arguments to quantitative predictions for neutron- 
scattering experiments, we need to consider the theoretical predictions for momen- 
tum distributions that are used as input to the impulse approximation. A wide va- 
riety of many-body calculational methods have been developed and applied to cal- 

culate the momentum distributions in helium. Remarkably, the most straightfor- 
ward method, which involves perturbative expansion in the potential about the non- 
interacting ground state using Feynman-diagram (field-theory) methods, works poorly 
for helium. The reason is that the He-He potential (Fig. 3a) is singular (infinite) 
at short distances. Thus, an infinite-order resummation of the perturbative expan- 
sion is required in order to obtain nonsingular answers. (We return to this point in 
the sidebar "How Final-State Effects Were Really Calculated.") However, several 

PREDICTION OF BOSE CONDENSATE 
BY AB INITIO THEORY 

Fig. 6. (a) An ab initio calculation of the 

momentum distribution n(p) in superfluid 

helium at absolute zero (red curve) exhibits 

a delta-function spike at p = 0, which is 

interpreted as the signature of a Bose- 

condensate fraction in the superfluid of about 

9.24 percent. As expected, an ab initio 

calculation of n(p) in normal-fluid helium at 

3.3 kelvins lacks a delta-function spike at 

p = 0. The acronyms GFMC and PIMC refer 

to calculational methods described in the 

text. (b) The theoretical Compton profiles 

M Y )  shown here were calculated by using 

the theoretical momentum distributions as 

input to the impulse approximation. The 

integral over Y of each Compton profile is 

unity. The fraction of the integral of the 0.32- 

kelvin &(Y) contributed by its delta-function 

spike is the Bose-condensate fraction at that 

temperature. 
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methods have been developed that avoid the pathologies of perturbative expansions 
for strong potentials. 

One approach is to invoke a quantum-mechanical variational principle that al- 
lows one to calculate the momentum distribution by minimizing the energy of trial 
wave functions for the ground state of 'He. The most successful of such variational 
methods is the hypernetted chain (HNC) approximation. Another approach, termed 
the Green's function Monte Carlo (GFMC) method, is to use a stochastic Monte 
Carlo algorithm to solve the many-body Schrodinger equation for the ground-state 
wave function. A third approach, termed the path-integral Monte Carlo (PIMC) 
method, is to invoke the path-integral formulations of quantum mechanics and sta- 
tistical mechanics originally proposed by Feynman to solve for the momentum dis- 
tribution as a sum over classical paths in imaginary time. The path-integral method 
is especially applicable to nonzero temperatures, whereas the variational and Green's 
function methods, which calculate the ground-state wave function, yield the momen- 
tum distribution at zero temperature only. 

Figure 6a shows the momentum distribution predicted by the GFMC method 
for superfluid 'He at absolute zero and the momentum distribution predicted by the 
PIMC method for normal-fluid 'He at 3.3 kelvins. The GFMC method yields a delta 
function in the zero-temperature momentum distribution at p = 0 corresponding to a 
Bose-condensate fraction of 9.2 percent, much less than the non-interacting value of 
100 percent. (The HNC method also yields a delta function at p = 0 and the same 
value for no.) The PIMC calculation, which has been carried out only for T > 1 
kelvin, shows a condensate fraction that tends toward the GFMC and HNC value 
at the lowest temperature calculated and tends toward zero as the temperature ap- 
proaches TA. At T >. TA the PIMC method yields a momentum distribution that is 
smooth and approximately Gaussian, as seen in Fig. 6a for T = 3.3 kelvins. The 
widths of all these momentum distributions are roughly equal to the Ak w 2 A '  
that we estimated heuristically from examination of the He-He potential and the pair- 
correlation function for liquid 'He. 

Using the GFMC and the PIMC momentum distributions of Fig. 6a to calculate 
the Compton profiles in the impulse approximation yields the theoretical predictions 
for J}A(Y) shown in Fig. 6b. Note that a delta-function peak at Y = 0 is predicted for , 

the superfluid at temperatures below TA, whereas a smooth J I A ( Y )  is predicted for the 
normal fluid at temperatures above TA. 

Experimental Results 

The critical experimental issue for momentum-distribution measurements is to 
achieve conditions at which the impulse approximation may be valid, namely, high 
values of Q and w. To do so requires neutrons with relatively high energies, on the 
order of hundreds of meV. Because the spectrum of neutrons from a reactor is a 
Maxwell-Boltzmann distribution that peaks at 23 meV, the neutron flux decreases 
exponentially with further increases in energy. Therefore, reactor experiments are 
generally limited to Q values less than 12 A ' .  Many experiments on 'He have been 
done at reactor sources, and the most carefully analyzed data lie in the Q range be- 
tween 4 A '  and 7 A ' .  However, in this Q range the deviations from the impulse 
approximation are large. 

More recently, experiments have also been done at pulsed neutron sources. In 
order to maintain short pulse widths for time-of-flight experiments, pulsed neutron 
sources have an undermoderated neutron specturm; that is, a relatively large fraction 
of the neutrons fail to reach a thermal distribution before they exit the moderator. 
Thus, the flux of high-energy neutrons decreases only inversely with increasing en- 
ergy, so higher energy and momentum transfers are achieved. In 1986 a team headed 
by Paul Sokol of The Pennsylvania State University organized an effort to build a 
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chopper spectrometer optimized for momentum-distribution studies. The spectrom- 
eter, known as Phoenix, was built at the Intense Pulsed Neutron Source at Argonne 
National Laboratory. Phoenix has provided data at Q values up to 24 A ' .  The 
pulsed-source experiments thus more closely approach conditions at which the im- 
pulse approximation might be valid. They also permit much greater control of the 
instrumental resolution function than do reactor experiments. 

Figure 7 shows experimental data for the Compton profile of superfluid ' ~ e .  
(The 7-A-1 and 1 2 - A 1  data were obtained at a reactor source and the 2 3 - A '  data 
were obtained at a pulsed neutron source. Each data set is broadened by an approxi- 
mately Gaussian instrumental resolution function with a full width at half maximum, 
AYpwHM, of about 0.6 A 1 . )  At first glance all the data sets look symmetric and cen- 
tered at Y = 0. Moreover, the widths and shapes of the Jem(Y, Q) appear to be in- 
dependent of Q, in agreement with our expectations for Y -scaling of the Compton 
profile. The width not only fits our heuristic estimate of 2 A ' ,  which was based on 
a consideration of zero-point energies, but also is comparable to the prediction of ab 
initio theory (see Fig. 6b). 

However, a more careful examination reveals some discrepancies with this sim- 
ple picture. Note that the 7- A '  data are slightly asymmetric and the peak center 
is shifted to the left of Y = 0. The asymmetry is still present but smaller in the 12- 
A-1 data and is smallest in the 23- A '  data. Additional reactor data at Q < 12 A-1 - 

Y-SCALING OF MEASURED 
COMPTON PROFILES 
FOR SUPERFLUID ' ~ e  

Fig. 7. Each of the measured Compton 
4 profiles, Jem{Y, Q), for superfluid He shown 

here is broadened by a Gaussian instrumental 

resolution function with a full width at half 

maximum of about 0.6 A .  The 7- A and 

the 1 2 - A 1  data were taken at a reactor, 

and the 2 4 - A '  data were taken at a pulsed 

neutron source. Note that each data set lies 

approximately on the same curve irrespective 

of the Q value at which it was obtained. In 

other words, the measured Compton profiles 

exhibit the Y-scaling predicted by the impulse 

approximation. Also note that small deviations 

from the impulse approximation, in the form 

of an asymmetry in the peak shape and a 

leftward shift of the peak center, are visible in 

the 7- and 1 2 - A  data. 

show that the width of the peak does not remain constant but rather oscillates about 
an average value as Q increases. These observations call into question the validity of 
the impulse approximation for the reactor Q range. Moreover, no reactor experiment 
has shown a well-resolved delta-function peak due to a Bose condensate. 

Heretofore the above discrepancies have been minimized by data-analysis pro- 
cedures that include symmetrizing the data and averaging over several Q. The data- 
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INSTRUMENTAL RESOLUTION 
FUNCTION FOR PHOENIX 

Fig. 8. The chopper spectrometer known as 

Phoenix is located at the Intense Pulsed Neu- 

tron Source at Argonne National Laboratory. 

Its instrumental resolution function, Rl(Y) ,  

at Q = 24 A '  was calculated by a Monte 

Carlo simulation and checked by experiments 

on samples whose scattering is well doc- 

umented. Theoretically predicted Compton 

profiles must be convolved with R l ( Y )  before 

being compared with Phoenix data. 

analysis procedures have assumed that some additional unknown mechanism broad- 
ens the impulse approximation and thereby broadens the delta function that would 
be produced by the Bose condensate. To determine the Bose-condensate fraction, the 
data are fit to a model for the momentum distribution in which no is the only free 
parameter, and data at T > TA are used to fix the momentum distribution for the re- 
mainder of the atoms. Some authors claimed that these procedures lead to a value for 
the condensate fraction of about 10 percent. The rune in the opening illustration of 
this article was drawn in 1983 to celebrate those claims and the seventy-fifth jubilee 
of the discovery of liquid helium. However, the data-analysis procedures leading to 
the claims had a serious conceptual error. The most credible value for no obtained 
by model-fitting procedures is between 4 and 5 percent, in serious disagreement with 
ab initio calculations of momentum distributions. That is where the condensate saga 
stood in 1986 when we entered the picture. 

As mentioned earlier, three new elements have converged to resolve the question 
of the momentum distributions in ^ ~ e .  First, instruments at pulsed neutron sources 
have yielded more accurate data at higher Q values. Second, highly accurate many- 
body calculations of momentum distributions have become feasible on supercomput- 
ers. And third, a new theory for the broadening of the impulse approximation due to 
final-state effects has been developed by this author. The new theory of final-state 
effects eliminates model fitting and permits a direct comparison between ah initio 
theory and experiment. 

Before discussing final-state effects, we need to show more clearly the discrep- 
ancies between theory and experiment. The best data for comparison with theory is 
the pulsed-source data of Sosnick, Snow, Sokol, and Silver obtained at Q = 24 A '  
with the Phoenix instrument. To compare theory with the measured Compton pro- 
file, we must first determine the instrumental resolution function of the spectrometer, 
RI(Y). We used a Monte Carlo simulation of the Phoenix spectrometer to calculate 
Rf l ) ;  the result (Fig. 8) was confirmed by experiments on samples whose scatter- 
ing is well known. We then convolve Ri(Y) with the theoretical Compton profile, 
J(Y , Q), to obtain a prediction for Jexp(Y, Q), the measured Compton profile: 

where the symbol (8 denotes convolution. 
Figure 9a compares theory and experiment for the normal fluid at 3.3 kelvins. 

The theoretical prediction for Jexp(Y, Q) was calculated by using the PIMC momen- 
tum distribution for the normal liquid as input to the impulse approximation and con- 
volving the result with RI(Y) according to Eq. 8. Despite the absence of adjustable 
parameters, the agreement between ab initio theory and experiment is excellent. 

A similar comparison between theory and experiment for the superfluid at 0.32 
kelvin is shown in Fig. 9b. The fact that the superfluid data are more sharply peaked 
around Y = 0 than the normal-fluid data suggests changes in the momentum distri- 
bution that might be associated with the presence of a Bose condensate. The theo- 
retically predicted Jem(Y, Q)  for the superfluid was calculated by using the GFMC 
momentum distribution as input to the impulse approximation and convolving the re- 
sult with RI(Y). Although the predicted width of J(Y) agrees with experiment, the 
data are much less sharply peaked in the region around Y = 0 than the impulse- 
approximation prediction. If we now fit the data using the data-analysis procedures 
previously applied to reactor data, then we might conclude that the Bose-condensate 
fraction in the superfluid is much smaller than the theoretical value of 9.2 percent. 
Instead we believe that the discrepancies apparent in Fig. 9b between ah initio theory 
and experiment require corrections to the impulse approximation according to a new 
theory of final-state effects. 
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(a) Normal-Fluid ' ~ e  

lllll~ll Experiment ( Jem) 
Impulse Approximation (JlA8 Rl ) ---- HP Final-State Effects (JIAis Rl 8 RE)  

Final-State Effects 

(b) Superfluid ' ~ e  

e 

The impulse approximation, the basis for all the ab initio calculations discussed 
so far, assumes that the incident neutrons scatter from free helium atoms. In reality, 
however, after an atom is struck by a neutron, it interacts with neighboring atoms in 
the liquid (see opening illustration). Those interactions, which result in a broaden- 
ing of the impulse approximation, are called final-state effects. Although the last two 
decades have produced many calculations of final-state effects, the various theories 
have been controversial and many conflicting results have been published. As a pre- 
lude to our recent work on final-state effects, we shall review only those theories that 
directly contribute to our current understanding. 

The earliest and simplest theory of final-state effects was put forward in 1966 by 
Hohenberg and Platzman. Here we give the heuristic argument leading to their result 
for final-state broadening. After a helium atom with initial momentum pi is struck 
by a neutron, it collides with neighboring atoms at a rate 1 / r  = patotd(Q)KQ/m, 
where r is the average time between collisions, ot,,t~(Q) is the total cross section for 
scattering of a helium atom with momentum HQ from other helium atoms, and we 
assume h Q  Ã pi. The Heisenberg uncertainty principle implies that the energy of the 
recoiling atom should have an uncertainty of H / r .  To account for that uncertainty, we 
alter Eq. 2 by adding to the final neutron energy Epf an imaginary part called a self 
energy, Yip, = -iK/2r. The energy-conserving delta function in Eq. 2, 6(hw - E,, + 
En.) = W E )  = (1/271/0 f T  dt exp(it AE/K), is replaced by a new delta function: 

With this replacement it is straightforward to derive that J(Y,  Q) is a convolution 
of the impulse approximation with a broadening function due to final-state effects, 

RFS(Y,Q); that is, 
J(Y,Q) =RFS ̂ J~A. (10) 

EXPERIMENTAL COMPTON PRO- 
FILES COMPARED WITH THEORY 

Fig. 9. The experimental Compton profiles, 

Jexp(Y, Q), for (a) normal-fluid * ~ e  and (b) 

superfluid " ~ e  are based on 2 4 - A '  Phoenix 

data obtained at 3.5 kelvins and 0.32 kelvin, 

respectively. Shown for comparison (solid 

curves) are the Compton profiles calculated by 

convolving the predictions of ab initio theory 

and the impulse approximation (Fig. 6b) 

with the Phoenix instrumental resolution 

function (Fig. 8). Note that the impulse 

approximation agrees well with experiment 

only in the case of normal-fluid " ~ e .  Also 

shown (dashed curves) are the Compton 

profiles calculated by convolving the solid 

curves with Hohenberg and Platzman's final- 

state-broadening function, R^(Y). Note that 

the dashed curves deviate substantially from 

the data. 
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0 (A') 
TOTAL ' ~ e - ~ ~ e  SCATTERING 
CROSS SECTION 

Fig. 10. The small oscillations, or hard-sphere 

glories, in this plot of utotai(Q) versus 0 are 

an Interference effect due to the symmetry 

requirement on the two-boson wave function. 

However, apart from those oscillations the 

cross section decreases linearly with In 0. As 

a result, the neutron scattering law also has a 

logarithmic dependence on Q at large Q and 

thus approaches the impulse approximation 

(which is independent of Q) only very slowly 

(see Fig. 13). 

The final-state broadening function should have a Lorentzian form: 

where 

As we will see later, many features of this early theory coincide with our current 
model of final-state broadening. For example, both models predict that the full width 
at half maximum of the broadening has the form 

Moreover, if the potential is infinitely steep (hard core) and thus ntotaI(Q) is indepen- 
dent of Q, the final-state-broadened J (Y,  Q) of the Hohenberg and Platzman model 
obeys Y -scaling even if the impulse approximation is not applicable, a result in ac- 
cord with the original suggestion of West and a feature of our model also. Unfortu- 
nately, nature has not been so kind: We see in Fig. 10 that, instead of being constant, 
ototai(Q) is a logarithmic function of Q (apart from small glory oscillations, which 
are an interference effect due to the Bose-Einstein spin-statistics relation). The loga- 
rithmic dependence of utotaI(Q) reflects the steepness of the He-He potential at short 
distances (see Fig. 3a). It also implies that even at very high Q the impulse approxi- 
mation cannot be applied directly. Instead Y -scaling is approximately true (the devia- 
tions vary as In Q), and corrections for final-state effects must be made. 

Although the Hohenberg and Platzman model shares many features with our 
present model, it is not completely correct for two reasons. First, the exact kinetic- 
energy sum rule (w2) on S (Q, w) requires that, at high Q, 

That is, final-state effects should not affect the second moment, or Gaussian width, of 
J (Y , Q). The form for RFs(Y, Q) given in Eq. 11 does not satisfy the kinetic-energy 
sum rule and, in fact, yields an infinite value for the integral in Eq. 13. Second, 
the broadening predicted by Eq. 11 is much larger than is observed experimentally. 
For example, Fig. 9a shows that convolution of the Hohenberg-Platzman broadening 
function with the PIMC impulse-approximation prediction for the normal fluid yields 
a J(Y) that is in serious disagreement with the data. 

The additional qualitative physics required to complete the theory for final-state 
effects was first proposed by Gersch and Rodriguez in 1973, but their results were 
ignored in more than twenty subsequent theoretical papers on final-state effects as 
well as in the many papers analyzing the reactor experiments. In 1987 this author 
independently developed a theory embodying the same qualitative physics but im- 
plying new many-body techniques (see "How Final-State Effects Were Really Cal- 
culated"). The new theory predicted exactly the results obtained soon after from the 
new pulsed-source experiments. 

Here we present a heuristic description of the new theory. As discussed ear- 
lier, the atoms in liquid *He are not uniformly distributed in space; rather they are 
distributed according to the pair-correlation function shown in Fig. 4. At Q values 
of many A ' ,  the motion of an atom recoiling from a neutron collision can be de- 
scribed heuristically by a classical trajectory. Figure 3b shows that initially an atom 
is likely to be in the attractive part of the potential and that, after being struck by 
a neutron, the atom travels for some distance,before it begins to collide with the 
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steeply repulsive cores of the potentials of neighboring atoms. The collision rate, 
1 / ~ ,  depends on the recoil distance x = tRQ/m: l / r (x)  w p g ( x ) ~ ~ ~ ~ ~ ~ ( Q ) f i Q / m .  
Since g(x) is zero at small x ,  there will be no scattering at short recoil times. Also, 
since g(x) approaches unity at large x, the scattering rate should approach the Ho- 
henberg and Platzman prediction at long recoil times. With this reasoning we de- 
duce that the self energy to be used in Eq. 9 depends on the recoil distance; that is, 
Sp (x )  = -ifi/2~(x). The result for the final-state broadening then becomes 

where again F = $ ~ o ~ ~ ~ ~ ~ ( Q ) .  The Hohenberg and Platzman prediction, Eq. 11, can 
be obtained from Eq. 14 in the limit of a structureless fluid (g(r) Ã‘ 1). However, 
unlike Eq. 11, Eq. 14 satisfies the kinetic-energy sum rule because, in fact, g(0) = 0. 
Note also that the broadening given by Eq. 14 has the same FWHM as the broad- 
ening of Hohenberg and Platzmann, but it is negative at large \Y\ in order to satisfy 
the sum rule. A somewhat more accurate field-theoretic version of the new theory is 
discussed in the sidebar. 

In the new theory the scaling variable, Y, acquires a new physical interpretation 
as the variable conjugate to the distance traveled by a recoiling atom. In the limit 
of a hard-core potential (that is, rtotal(Q) = 2 7 4 ,  where r0 is the hard-core radius 
and the factor of 2 accounts for forward diffractive scattering), final-state effects be- 
come a geometric problem that depends only on r0 and the relative atomic positions 
given by g(r). In quantum mechanics the position of an atom, in this case the re- 
coil distance x,  is not a variable distinct from its momentum. Rather, they are con- 
jugate variables in the sense of a Fourier transform. Hence, introducing the relative 
positions of the atoms introduces no new variables into the problem, and Y -scaling 
will continue to hold even though the impulse approximation does not. Remember, 
all this assumes otota1 is independent of Q. If we now include the Q dependence 
of D ~ ~ ~ ~ ~ ( Q ) ,  we have indeed introduced a new variable and Y -scaling breaks down. 
However, since in practice ctota1(Q) varies approximately as ln Q,  the corrections to 
Y -scaling in our theory are logarithmic, that is, slowly varying with Q. 

Figure 11 shows the final-state broadening function predicted by the somewhat 
more sophisticated version of our theory presented in the sidebar. To make experi- 
mental predictions we must convolve JIA(Y) with the RFs(Y, Q) of Fig. 1 1 and with 
the R,(Y, Q)  of Fig. 8. The results for the normal fluid and the superfluid are shown, 
together with the pulsed-source data, in Figs. 12a and 12b, respectively. The agree- 
ment between theory and experiment is now excellent for both the normal fluid and 
the superfluid! Experiment and theory both converge to a Bose-condensate fraction in 
the superfluid of 9.2 percent. We emphasize that the many-body calculations of mo- 
mentum distributions and the theory for final-state effects were completed before the 
pulsed-source experiments were performed, so that in this case ah initio theory ac- 
curately predicted experiment. Further experiments by Sokol and collaborators show 
excellent agreement over the entire quantum-liquid region of the phase diagram of 
4He and at a variety of Q. 

Implications of the Breakthrough 

BROADENING FUNCTION 
PREDICTED BY NEW FSE THEORY 

Fig. 11. Shown here is the broadening func- 

tion, RFs(Y), predicted by the author's new 

theory of final-state effects (FSE). The full 

width at half maximum of RFS(Y), like that 

of Hohenberg and Platzman's final-state- 

broadening function, is given approximately 

by ~ o - ~ , , t ~ ~ ( Q ) .  However, j* dY Y&(Y)  = 0, 

and thus, unlike Hohenberg and Platzman's 

final-state-broadening function, Rps(Y) satis- 

fies the exact kinetic-energy sum rule on the 

neutron scattering law. 

The convergence of theoretical and experimental routes to the momentum dis- 
tributions of H e  has finally confirmed London's fifty-year-old hypothesis connecting 
superfluidity with the existence of a Bose condensate-and may thus be considered 
a triumph for modem condensed-matter physics. The success of the momentum- 
distribution calculations provides confidence in the new supercomputer calculational 
methods for many-body quantum systems. The new theory of final-state effects points 

Los Alamos Science Summer 1990 



The Condensate Saga 

(a) Normal-Fluid ' ~ e  (b) Superfluid * ~ e  

CONVERGENCE OF THEORY 
AND EXPERIMENT 

Fig. 12. Convolution of the impulse approxi- 

mation (Fig. 6b) with the broadening function 

given by the author's final-state-effects theory 

(Fig. 11) yields predicted Compton profiles 

that agree well with the data for both (a) 

normal-fluid 'He and (b) superfluid ' ~ e .  

The agreement for normal-fluid ' ~ e  arises 

because the sum rule satisfied by the new 

final-state broadening function ensures that 

final-state effects do not change the width 

of the normal fluid's essentially Gaussian 

momentum distribution. In the case of super- 

fluid "He, both theory and experiment yield 

a Bose-condensate fraction of about 9.24 

percent. 

toward novel perturbative methods for calculating the dynarnical response of strongly 
correlated systems (see sidebar). And the success of the experiments with the Phoenix 
spectrometer demonstrates the utility of high fluxes of epithermal neutrons in measur- 
ing quantities of fundamental scientific importance. However, the convergence does 
not mean that the condensate saga is finally at an end. Like many research break- 
throughs, this one has important implications for future research. 

If the ab initio calculations of momentum distributions in '^He are correct, the 
data are consistent with no other theory for final-state effects except that of the au- 
thor. Thus we believe that the new theory, or improved versions thereof, can be 
used with confidence to interpret and predict future experiments on momentum dis- 
tributions in condensed-matter systems. The fact that the new theory predicts much 
smaller final-state effects than those predicted by Hohenberg and Platzman is en- 
couraging. However, the theory also tells us that final-state broadening washes out 
sharp structure in the momentum distribution and that, because AY cc utotai(Q) (see 
Eq. 12), the broadening decreases only slowly with increasing Q. Figure 13 shows 
theoretical predictions for J (Y,  Q) for increasing values of Q. Note that the broaden- 
ing in the region near Y = 0 decreases, but only slowly, as Q increases from 30 to 
270 A ' .  Thus the theory predicts that the Bose-condensate fraction will not produce 
a sharp peak in J (Y) in any feasible neutron-scattering experiment. This prediction 
should be an important test of the new theory. 

To analyze reactor experiments, the theory will have to be augmented to account 
for the additional deviations from the impulse approximation that are observed at Q 
values less than 12 A 1 .  Among those deviations are the oscillations in the width 
of J(Y,  Q) with Q and the asymmetry about Y = 0. Both effects may be due to 
collective behavior in the condensed phase. 

Perhaps the most important momentum-distribution experiment to attempt is ob- 
servation of the Ferrni-surface discontinuity in ' ~ e  (that is, the discontinuity in n(p) 
at p = pp). Figure 14 shows the momentum distribution of a gas of non-interacting 
ferrnions with the same density as ' ~ e .  Also shown are the momentum distribution 
for ' ~ e  predicted by using HNC calculations as input to the impulse approxima- 
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tion and the "apparent" momentum distribution that would be inferred by analyzing 
final-state-broadened data as if the impulse approximation did not require corrections 
for final-state effects. In the absence of final-state effects, the discontinuity in n{p) 
would cause a sharp change in slope in JIA(Y, Q) at Y = p f i .  Unfortunately, the 
new theory of final-state effects predicts that such a change in slope will not be di- 
rectly apparent in the data. Nevertheless, experiments can distinguish the HNC the- 
ory from other theories that do not have a Fermi-surface discontinuity (such as the 
pairing theory of Lhuillier and Bouchaud). The HNC theory would predict a different 
Gaussian width for J ( Y ,  Q)  than would other theories. Experiments on 'He are par- 
ticularly difficult because ' ~ e  is a strong absorber of neutrons (and is therefore the 
primary component of thermal-neutron detectors!). Nevertheless, we hope that theory 
and experiment will resolve the question of the Fermi-surface discontinuity in 'He in 
less time than the more than twenty years required to confirm the existence and size 
of the Bose condensate in ^He. 

At the beginning of this article, we mentioned that 'He becomes a superfluid 
at 3 millikelvins. Does that mean a Bose condensate forms in 'He despite the spin- 
statistics relation? The answer is no. Superfluidity in ' ~ e  is caused by the formation 
of Cooper pairs of 'He atoms and is thus somewhat analogous to superconductivity 
in metals, which is caused by formation of Cooper pairs of electrons. The differ- 
ence is that the Cooper pairs of 'He atoms are uncharged and form a relative p-wave 
bound state, whereas the Cooper pairs of electrons in metals are charged and usually 
form a relative s-wave bound state. 

The present experimental and theoretical techniques for determining momentum 

Predicted for Ideal Fermi Gas with --------------- 1 Density of Liquid ' ~ e  

Inferred for 3 ~ e  by Analysis of "Data" 
without Correcting for Final-State 

- 
Q Predicted f o r 3 ~ e  by HNC and - 
c Impulse Approximations 

0.1 - 
I 

I 
0.01 1 , , 1 , , 1 , 1 1  I , ,  

0.0 0.5 pf 1 .O 1.5 

p ~ n  (A"') 

distributions in helium can also be applied to questions concerning the pressure and 
temperature dependence of the condensate fraction, the non-existence of a Bose con- 
densate in solid ^He, the non-existence of a Fermi surface in solid 'He, the behav- 
ior of n(p) at high lpl (which many-body theories predict is exponential rather than 
Gaussian even in the normal quantum liquid), the larger no predicted for ^He in a 
porous medium (which is expected to behave like a low-density Bose system), the 
complex momentum distributions expected for mixtures of 'He and '^He, the pre- 
dicted absence of a Bose condensate in the two-dimensional ̂ He systems produced 
by physisorption of ^He on surfaces, and so on. All such experiments will benefit 
from the epithennal neutrons provided by pulsed neutron sources or by hot sources 
at reactors because they all require measurements at high Q values. Although con- 
ditions suitable for applying the impulse approximation may never be reached, the 
final-state corrections will be understood. 

Y (A') 

CAN THE BOSE CONDENSATE 
IN ' ~ e  BE OBSERVED DIRECTLY? 

Fig. 13. The author's theory of final-state ef- 

fects predicts that the Compton profile of "He 

at absolute zero sharpens only slowly with in- 

creasing Q near Y = 0, the region relevant to 

the Bose condensate. That prediction implies 

that the Bose condensate will not produce a 

distinct peak in the Compton profile at any ex- 

perimentally feasible Q. 

CAN THE FERMI SURFACE 
IN ' ~ e  BE OBSERVED DIRECTLY? 

Fig. 14. The Paul! exclusion principle implies 

that, at absolute zero, the momentum distri- 

bution of an ideal Fermi gas is a step function 

with a discontinuity of 1 at the Fermi sur- 

face, that is, at the momentum of the highest 

filled momentum state, pp. Shown here, as a 

dashed curve, is the absolute-zero momentum 

distribution of an ideal Fermi gas with the 

same density as He ,  for which pp//Ã = 0.789 
*-I . Also shown, as a red curve, is the 

absolute-zero momentum distribution pre- 

dicted for real (interacting) ' ~ e  by the HNC 

approximation. The discontinuity remains 

at 0.789 A 1 ,  but its magnitude is reduced. 

Finally, the black curve is the "apparent" 

momentum distribution, which is inferred as 

follows. First, the impulse approximation 

prediction (at 30 A )  obtained by using 

the red curve as input is convolved with a 

final-state broadening function appropriate 

to H e .  The resulting final-state-broadened 

"data" are then analyzed by assuming the 

validity of the impulse approximation but not 

correcting for final-state effects. Note that the 

momentum distribution so inferred exhibits 

no discontiniuty at pp because, like the delta 

function at k = 0 in the momentum distribu- 

tion of superfluid " ~ e ,  it has been washed out 

by final-state effects. 
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Y-SCALING IN 
ELECTRON-NUCLEON SCATTERING 

Fig. 15. Shown here are Compton profiles 

based on data for the quasi-elastic scattering 
12 

of electrons from the C nucleus at various 

relativistic four-momentum transfers. The 

Y variable has been generalized to include 

relativistic kinematics. The scattering follows 

Y-scaling for Y < -0.1 GeVIc, as evidenced 

by the fact that all the profiles fall on the same 

curve in that region. Y-scaling breaks down 

at greater Y values because of excitation of 

internal degrees of freedom of the nucleons 

making up the nucleus, such as the A(1238 

MeV) excited state. If final-state effects are 

ignored, the impulse approximation suggests 

that the nucleon momentum distribution 

decreases exponentially with p over nearly 

four decades. A theoretical explanation for 

this almost universal behavior is the subject 

of current research. Determining whether the 

momentum distribution of helium quantum 

fluids behave similarly at large p would prove 

interesting, but the poorer signal-to-noise 

ratio in neutron-scattering experiments has 

so far prevented such an experiment. 

Going beyond helium, we are now ready to expand our knowledge of momen- 
tum distributions to a wide variety of many-body quantum systems. For example, 
quasi-elastic electron-nucleus scattering (QENS) at GeV energies is aimed at mea- 
suring the momentum distributions of nucleons in nuclei. Even though the energy 
scale characteristic of QENS differs by ten orders of magnitude from the energy scale 
of neutron scattering from helium, the two types of experiments share many com- 
mon elements, including Y -scaling phenomena, the importance of final-state effects, 
and the methods for calculating properties of the many-particle wave functions. Fig- 
ure 15 shows J (Y,  Q) for electron scattering from the ^C nucleus. For Y < 0 the 
Compton profile exhibits a relativistic analogue of Y -scaling over nearly four orders 
of magnitude in J (Y,  Q). For Y > 0 excitation of internal degrees of freedom of 
the nucleons, such as the A(1238 MeV) resonance, destroys the Y -scaling. Note also 
the nearly exponential dependence of J(Y , Q) on \Y 1. We do not know whether the 
exponential dependence is a property of the underlying momentum distribution or is 
a manifestation of final-state effects. That question has been as important in nuclear 
physics as the existence of a Bose condensate in helium. Thus we plan to make the 
extension of our final-state theory to nuclei a high priority. 
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How final-state effects 
were really calculated 

T 
he derivation of final-state broadening presented in the main text was phys- 
ically intuitive but, like all heuristic arguments, involved a sleight of hand: 
The classical-trajectory concept was not derived from first principles. In prac- 

tice, the theory of final-state effects is a very difficult many-body problem. Conven- 
tional perturbative expansion about the non-interacting ground state, a technique so 
successful in calculating the properties of weakly interacting systems, is not a use- 
ful approach here because helium atoms interact at short distances through a steeply 
repulsive potential. However, alternatives to perturbation methods, such as the varia- 
tional and Monte Carlo methods, are capable of handling strongly interacting systems 
and thus have been most successful in calculating ground-state properties of helium, 
including the momentum distribution n ( p )  and the pair-correlation function g ( r ) .  

In order to test the ground-state results against neutron-scattering experiments, 
we need to calculate the dynamical response of the system to neutron scattering. 
Since we have an obvious interest in not repeating the considerable work involved 
in generating the ground-state results, we want to calculate the response by applying 
perturbation theory to the variational and Monte Carlo results for the ground state. 
However, conventional perturbation theory is again out of the question because the 
dynamical response also involves helium-helium interactions. 

Before we present our solution to this problem, let's outline the starting point. 
We assume that neutron scattering at momentum transferh Q  introduces, at time zero, 
a fluctuation about the ground state in the density of atoms with wave vector Q .  By 
calculating the amplitude of that density fluctuation at a later time t and taking its 
Fourier transform, we can determine S (Q , w ) ,  the observed scattering law. (Note 
that w  is conjugate to t . )  The density fluctuation is equal to a summation over all 
so-called particle-hole excitations about the ground state, that is, over all processes 
that add to the ground state an atom with wave vector k  + Q  and remove from the 
ground state an atom with wave vector k .  

In the impulse approximation we assume that the particle-hole excitations prop- 
agate freely without interacting with other atoms. Final-state effects, on the other 
hand, are due to interaction of the excitations with other atoms. Scattering of a par- 
ticle and a hole creates more particle-hole excitations about the ground state. Al- 
though in principle an infinity of multiple scatterings of a particle-hole pair can oc- 
cur, the correlations in the ground-state wave function imply that only single addi- 
tional particle-hole excitations need be considered. In effect, the correlations screen 
the steeply repulsive core interaction at short distances, rendering that interaction fi- 
nite. After all, to minimize their energy in the ground state, the atoms tend to sit in 
the attractive part of the potential, far away from its steeply repulsive core. Thus the 
effective final-state interactions can be characterized by a small parameter, and per- 
turbation theory can be used for systematic, controlled calculations. 

The divergent terms in the perturbative expansion of S ( Q ,  w )  involve all pro- 
cesses that transform a (k + Q ,  k )  particle-hole pair to a (k' + Q ,  k') pair. To obtain 
finite results, those divergent terms must be explicitly resummed to all orders in the 
perturbation expansion. In practice, the summation is accomplished by defining a 
"projection superoperator," which acts in the Hilbert space of (k + Q ,  k )  particle-hole 
excitations about the ground state much as ordinary operators act in the Hilbert space 
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Neutron Scattering Law = Impulse Approximation + New Final-State-Effects Theory 

k 
Particle-Hole Excitation 
by Neutron Scattering 

k' k 
Particle-Hole Excitation 
by Particle Scattering 

NEW THEORY OF 
FINAL-STATE EFFECTS 

The author approximates the neutron scatter- 

ing law for helium as the sum of the impulse 

approximation and one additional scattering 

that accounts for final-state effects. Shown 

here are Feynman diagrams for that approxi- 

mation. The Feynman diagram for the neutron 

scattering law represents the propagation of a 

particle-hole excitation that removes a particle 

of wave vector k from the ground state and 

adds to the ground state a particle of wave 

vector k + 0. Arrows denote the direction of 

momentum flow. Arrows pointing right denote 

particle lines; arrows pointing left denote hole 

lines. Only the particle lines carry high mo- 

mentum. The hatched area denotes the exact 

result for S(0, w) including all scatterings of 

particles and holes. The Feynman diagram 

for the impulse approximation indicates that 

both particles and holes propagate without 

scattering. The Feynman diagram. for the 

final-state effects indicates that each particle 

scatters from another atom and creates a new 

particle-hole excitation. (Further scatterings 

are possible but not included in the approxi- 

mation.) The shaded square is the two-particle 

density matrix describing the correlations be- 

tween the two holes in the ground state 

created by the two particle-hole excitations. 

The hole-hole correlations are related by sum 

rules to the pair-correlation function of the 

ground state. The dashed lines represent the 

two-particle t-matrix that describes particle 

scattering. Because the hatched area appears 

in the Feynman diagrams for both the neutron 

scattering law and the final-state effects, 

the scatterings that transform a (k + 0, k) 

excitation to a (kt + 0, kt)  excitation must be 

calculated self-consistently. 

of quantum-mechanical states. The neutron scattering law then equals the expectation 
value of the projection superoperator, and calculations analogous to ordinary pertur- 
bation theory can be carried out in the superoperator Hilbert space. The effective 
interaction is the two-atom scattering matrix multiplied by a ground-state correlation 
function, which acts to screen the short-distance pathologies of the potential. Addi- 
tional restrictions on the important scattering processes are obtained by noting that 
all k entering a two-particle density matrix must be characteristic of the ground-state 
wave function, as given by the momentum distribution, and that Q  is much larger 
than those characteristic values. 

After the above procedure is implemented, the neutron scattering law can be 
expressed as the sum of the impulse approximation and one additional scattering 
process. The accompanying figure shows the Feynman diagrams for the components 
of the sum. In the Feynman diagram for the one additional scattering process, the 
dashed line represents the t-matrix describing the scattering of two particles and the 
square represents the two-particle density matrix for the ground state. The latter ma- 
trix is a generalization of the correlation functions, such as g ( r )  and n ( ~ ) ,  that char- 
acterize the ground-state wave function. 

If we approximate the density matrix in terms of g ( r )  and n ( p )  in a way that- 
satisfies sum rules and, since Q  is large, use a semiclassical approximation for the t -  
matrix, then the final "Dyson" equation can be solved analytically. The result for the 
final-state broadening, R ( Y ,  Q ) ,  is given by 

where 

The phase shift 61, is the semiclassical value for scattering at impact parameter h. 
The above expression for R ( Y ,  Q ) ,  which is somewhat more complicated than 

Eq. 14 in the main text, is the expression we have plotted in Fig. 11 of the main text 
and used in comparing theory with experiment. It is essentially the same as the fa- 
miliar Wentzel-Kramers-Brillouin ( W K B )  classical-trajectory approximation taught in 
elementary quantum mechanics except that the potential, V ( x ) ,  is replaced by an "op- 
tical potential," f t 2 ~ r ( x ) / r n  that accounts for all repeated scatterings from the same 
helium atom. The quantity h^~I ' (cm)/rn  is simply the forward scattering t-matrix for 
the scattering of two helium atoms. The approach taken here is required for helium, 
a strong scatterer, but it is satisfying that the result reduces to the W K B  approxima- 
tion in the limit of a weak scatterer. 
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How final-state effects
were really calculated

T
he derivation of final-state broadening presented in the main text was phys-
ically intuitive but, like all heuristic arguments, involved a sleight of hand:
The classical-trajectory concept was not derived from first principles. In prac-

tice. the theory of final-state effects is a very difficult many-body problem. Conven-
tional perturbative expansion about the non-interacting ground state. a technique so
successful in calculating the properties of’ weakly interacting systems, is not a use-
ful approach here because helium atoms interact at short distances through a steeply
repulsive potential. However. alternatives to perturbation methods, such as the varia-
tional and Monte Carlo methods. are capable of handling strongly interacting systems
and thus have been most successful in calculating ground-state properties of helium,
including the momentum distribution n(p) and the pair-correlation function g(r).

In order to test the ground-state results against neutron-scattering experiments,
we need to calculate the dynamical response of the system to neutron scattering.
Since we have an obvious interest in not repeating the considerable work involved
in generating the ground-state results, we want to calculate the response by applying
perturbation theory to the variational and Monte Carlo results for the ground state.
However, conventional perturbation theory is again out of the question because the
dynamical response also involves helium-helium interactions.

Before we present our solution to this problem, let’s outline the starting point.
We assume that neutron scattering at momentum transfer h Q introduces, at time zero,
a fluctuation about the ground state in the density of atoms with wave vector Q. By
calculating the amplitude of that density fluctuation at a later time t and taking its
Fourier transform, we can determine S (Q, w), the observed scattering law. (Note
that w is conjugate to t.) The density fluctuation is equal to a summation over all
so-called particle-hole excitations about the ground state, that is, over all processes
that add to the ground state an atom with wave vector k + Q and remove from the
ground state an atom with wave vector k.

In the impulse approximation we assume that the particle-hole excitations prop-
agate freely without interacting with other atoms. Final-state effects, on the other

hand, are due to interaction of the excitations with other atoms. Scattering of a par-
ticle and a hole creates more particle-hole excitations about the ground state. Al-
though in principle an infinity of multiple scattering of a particle-hole pair can oc-
cur, the correlations in the ground-state wave function imply that only single addi-
tional particle-hole excitations need be considered. In effect, the correlations screen
the steeply repulsive core interaction at short distances, rendering that interaction fi-
nite. After all, to minimize their energy in the ground state, the atoms tend to sit in
the attractive part of the potential, far away from its steeply repulsive core. Thus the
effective final-state interactions can be characterized by a small parameter. and per-
turbation theory can be used for systematic, controlled calculations.

The divergent terms in the perturbative expansion of S(Q, w) involve all pro-

finite results, those divergent terms must be explicitly resummed to all orders in the
perturbation expansion. In practice. the summation is accomplished by defining a
“projection superoperator.” which acts in the Hilbert space of (k + Q, k ) particle-hole
excitations about the ground state much as ordinary operators act in the Hilbert space

177



The Condensate Saga

Law = Impulse Approximation + New Final-State-Effects TheoryNeutron Scattering

k + Q

NEW THEORY OF
FINAL-STATE EFFECTS

The author approximates the neutron scatter-
ing law for helium as the sum of the impulse

approximation and one additional scattering
that accounts for final-state effects. Shown
here are Feynman diagrams for that approxi-
mation. The Feynman diagram for the neutron

scattering law represents the propagation of a
particle-hole excitation that removes a particle
of wave vector k from the ground state and

adds to the ground state a particle of wave
vector k + Q. Arrows denote the direction of

momentum flow. Arrows pointing right denote
particle lines; arrows pointing left denote hole
lines. Only the particle lines carry high mo-
mentum. The hatched area denotes the exact

result for S(Q, w) including all scattering of

particles and holes. The Feynman diagram
for the impulse approximation indicates that

both particles and holes propagate without

scattering. The Feynman diagram. for the
final-state effects indicates that each particle
scatters from another atom and creates a new
particle-hole excitation. (Further scattering

are possible but not included in the approxi-
mation.) The shaded square is the two-particle

density matrix describing the correlations be-
tween the two holes in the ground state

created by the two particle-hole excitations.
The hole-hole correlations are related by sum

rules to the pair-correlation function of the
ground state. The dashed lines represent the

two-particle t-matrix that describes particle

scattering. Because the hatched area appears
in the Feynman diagrams for both the neutron

scattering law and the final-state effects,
the scattering that transform a (k + Q, k)

calculated self-consistently.
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Particle-Hole Excitation
by Neutron Scattering

Q

of quantum-mechanical states. The neutron scattering law then equals the expectation
value of the projection superoperator, and calculations analogous to ordinary pertur-
bation theory can be carried out in the superoperator Hilbert space. The effective
interaction is the two-atom scattering matrix multiplied by a ground-state correlation
function, which acts to screen the short-distance pathologies of the potential. Addi-
tional restrictions on the important scattering processes are obtained by noting that
all k entering a two-particle density matrix must be characteristic of the ground-state
wave function, as given by the momentum distribution, and that Q is much larger
than those characteristic values.

After the above procedure is implemented, the neutron scattering law can be
expressed as the sum of the impulse approximation and one additional scattering
process. The accompanying figure shows the Feynman diagrams for the components
of the sum. In the Feynman diagram for the one additional scattering process, the
dashed line represents the t-matrix describing the scattering of two particles and the
square represents the two-particle density matrix for the ground state. The latter ma-

trix is a generalization of the correlation functions, such as g(r) and n(p), that char-
acterize the ground-state wave function.

If we approximate the density matrix in terms of g(r) and n(p) in a way that
satisfies sum rules and, since Q is large, use a semiclassical approximation for the t-
matrix, then the final “Dyson” equation can be solved analytically. The result for the
final-state broadening, R(Y, Q), is given by

where

The above expression for R(Y, Q), which is somewhat more complicated than
Eq. 14 in the main text, is the expression we have plotted in Fig. 11 of the main text
and used in comparing theory with experiment. It is essentially the same as the fa-
miliar Wentzel-Kramers-Brillouin (WKB) classical-trajectory approximation taught in
elementary quantum mechanics except that the potential, V (x), is replaced by an “op-

the scattering of two helium atoms. The approach taken here is required for helium,
a strong scatterer, but it is satisfying that the result reduces to the WKB approxima-
tion in the limit of a weak scatterer. ■
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Bayesian Inductive Inference. . 

DIRECT PROBABILITIES 

Fig. 1. What is the probability of getting r 

heads in 10 flips of a fair coin, Pr(r heads110 

flips of a fair coin)? Deductive logic tells 

us that the probability in question is given 

by Nr heads/N, where N is the number of 

all possible sequences of heads and tails 

that the 10 flips can generate and Nr heads 

is the number of those sequences that 

contain r heads (in any order). To obtain a 
10 

numerical answer, note that N = 2 and that 

Nr heads = 10!/(10 - r)! r!. Thus Pr(r heads110 

flips of a fair coin) = [10!/(10 - r)! r!]/21Â° 

to the whole subject is provided by the probability formulations of Bayes and Laplace. 
Bayes' ideas (published in 1763) were used very successfully by Laplace (181 2) 
but were then allegedly discredited and largely forgotten until they were rediscov- 
ered by Jeffreys (1939). In more recent times they have been expounded by Jaynes 
and others. Here we present an introductory glimpse of the Bayesian approach. We 
then illustrate how Bayesian ideas, and developments such as the maximum entropy 
method, are affecting data analysis and thoughts on instrument design at the Manuel 
Lujan, Jr. Neutron Scattering Center (LANSCE). 

Everyday games of chance are governed by deductive logic. For example, if we 
are told that a fair coin is flipped ten times, we can deduce accurately the chances 
that all ten flips produced heads, or that nine produced heads and one produced tails, 
. . . or that all ten flips produced tails (Fig. 1). Turning to neutron scattering, let's 
suppose we know the scattering law for a particular sample and the geometry of 
the diffractometer, the efficiencies of the detectors, and so on. Then we can predict 
the chances of observing a certain number of neutron counts in any given detector. 
These examples are in the realm of deductive logic, or pure mathematics: Given the 
rules of a "game," we can predict the chances of various outcomes. 

Most scientists, however, are concerned with the more difficult inverse prob- 
lem. Given that a coin of unknown origin was tossed ten times and the result was 
seven heads, was it a fair coin or a weighted one? Further, what is the best estimate 
of the bias-weighting of the coin and what is the confidence in the prediction? If we 
are now given more data on the coin, how should we incorporate the new informa- 
tion and how do our prediction and confidence level change? This type of problem 
is in the realm of inductive logic, plausible reasoning, or inference: Having seen the 
outcome of several "moves" in a game, we want to infer the rules governing that 
game. Returning to neutron scattering, let's suppose we have recorded so many neu- 
tron counts in various detectors and wish to infer the scattering law for the sample. 
Like all problems in inductive logic, this problem has no clear-cut answer. The most 
we can hope to do is make the "best" inference based on both the experimental evi- 
dence and any prior knowledge we have at hand, reserving the right to revise our po- 
sition if new information comes to light. Around 500 B.C. Herodotus said much the 
same thing: "A decision was wise, even though it led to disastrous consequences, if 
the evidence at hand indicated it was the best one to make; and a decision was fool- 
ish, even though it led to the happiest possible consequences, if it was unreasonable 
to expect those consequences." 

Bayes' Theorem 

Bayes' theorem, which was actually written down in its present-day form by 
Laplace and not Bayes, is the cornerstone of scientific inference. It provides the 
bridge between the inductive logic we require and the deductive logic we know how 
to use. Its status is somewhat akin to the position of Newton's second law of mo- 
tion in mechanics: seemingly tame and innocuous, but powerful enough to analyze 
a wide.variety of problems when the relevant details and assumptions are given. In 
mechanics we may be taught that s = - g t 2  is the relationship between the vertical 
distance s that a body falls under a gravitational field g after a time t when released 
from rest at t = 0. We may also be told that the speed of sound v through a gas with 
pressure P and density p is given by v2 = P/p. Although these two formulae look 
quite different and apply to different situations, it is satisfying to know that both of 
them are derived from the same physical law: Force is equal to the rate of change 
of momentum. Similarly the Bayesian approach to probability and statistics provides 
the logical foundation for the conventional teaching of statistics we are given as un- 
dergraduates. A Bayesian analysis often leads us to use the same procedure as ad- 
vocated by the "cookbook" school of statistics, but it forces us to state clearly the 
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assumptions (usually forgotten) made in going from the fundamental rule for induc- 
tive inference (Bayes' theorem) to the particular statistical prescription we use. 

But what is Bayes' theorem? Simply stated, it says that the conditional prob- 
ability of A (being true) given B (is true), written as Pr(AlB), is proportional to the 
conditional probability of B given A times the probability of A: 

Bayes' theorem is easy to prove for problems in which A and B are "macroscopic" 
events that can be realized in a large number of equally probable "microscopic" 
ways. In such problems the probability of an event is the number of ways in which 
the event can occur divided by the total number of possibilities. For example, sup- 
pose the space of "microscopic" possibilities is all the possible sequences of heads 
and tails that can occur if a fair coin is flipped ten times. Since the coin is fair, each 
of the possible sequences is equally probable. "Macroscopic" event A might then be 
the event that the total number of heads was less than four, and B might be the event 
that a head was obtained on the third and seventh tosses. Figure 2 shows a schematic 
representation of the space of all "microscopic" possibilities and the portions of that 
space occupied by realizations of event A and event B. Now, let N be the total num- 
ber of possibilities, NA be the number of possibilities resulting in event A, NB be the 
number of possiblities resulting in event B,  and NAB be the number of possibilities 
resulting in both event A and event B. Then the probabilities of the various outcomes 
of interest become 

Pr(A)=NA/N, R(B)=NB/N,  P~(AIB)=NB/NB, and Pr(BIA)=NAB/NA. 

We can then write the probability of both A and B occurring, R(A, B), in two differ- 
ent ways: 

R(A, B) = NABIN = Pr(A1B) x Pr(B) = Pr(B [A) x Pr(A). (2) 

Bayes' theorem, as stated in Eq. 1, follows immediately from the two expressions for 
Pr(A, B) in Eq. 2, provided we associate l /  Pr(B) in Eq. 2 with the proportionality 
constant in Eq. 1. 

Although this proof is simple, the full implications of Bayes' theorem do not 
become apparent until we discover that the theorem applies equally well to cases in 
which A and B are any arbitrary propositions and the probabilities assigned to them 
represent merely our belief in the truths (or otherwise) of the propositions. This re- 
markable generalization, which is certainly not obvious, was proved by Cox (1946) 
while he was considering the rules necessary for logical and consistent reasoning. 

Suppose we have a set of propositions. For example, a: It will rain tomorrow; 
b: King Harold died by being hit in the eye with an arrow during the battle of Hast- 
i n g ~  in 1066 A.D.; c: This is a fair coin; d: This coin is twice as likely to come up 
heads as tails; and so on. The minimum requirement for expressing our relative be- 
liefs in the truth of the various propositions in a consistent fashion is that we rank 
them in a transitive manner. That is to say, if we believe proposition a more than b 
and b more than c, then we necessarily believe a more than c. Such a transitive rank- 
ing can easily be obtained by assigning a real number to each of the propositions in a 
manner so that the larger the numerical value associated with a proposition, the more 
we believe it. Cox went on to put forward two more axioms for logical, consistent 
reasoning: (1) If we first specify our degree of belief that A is true and then specify 
how much we believe B is true given that A is true, then we have implicitly defined 
our degree of belief for both A and B being true; and (2) If we specify how much 
we believe that A is true, then we have implicitly specified how much we believe 
that A is false. Cox showed that if we accept these remarkably mild desiderata, then 

SAMPLE SPACE AND PROBABILITIES 

Fig. 2. The sample space occupied by all 

N equally probable microscopic possibilities 

is depicted schematically here as a circle of 

area N. The microscopic possibilities result 

in various macroscopic events, such as A and 

B. The number of possibilities that result in 

A and the number of possibilities that result 

in B are represented by portions of the circle 

with areas NA and NB (hatched regions). The 

probability of A, Pr(A), is given by the fraction 

NA/N;  similarly, Pr(B) is given by the fraction 

NB/N.  The probability of A and B, Pr(A, B), 

is given by N A , ~ / N ,  where NA,B, represented 

as an area of overlap between NA and NB, is 

the number of possibilities that result in both 

4 and B. 
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INDIRECT PROBABILITIES: 
THE BIAS WEIGHTING OF A COIN 

Fig. 3. (a) Shown here are three of the 

prior probability distributions that might 

be assigned to H, the bias weighting of 

a coin: the "ignorant" (or uniform) prior, 

which reflects the belief that all values of H 

(0 :< H <  ̂ 1) are equally probable; a "fair" 

prior, which reflects a belief that the coin is 

likely to have both a head and a tail and to be 

unbiased, or, in other words, a belief that the 

most likely value of H is 0.5; and a "crooked" 

prior, which reflects a belief that the coin is 

likely to be double-headed or double-tailed, 

or a belief that the most likely values of H 

are 1 or 0. The series of graphs in (b) shows 

how the posterior probability distributions 

corresponding to the priors in (a) evolve 

as the number of data increases. The data 

were generated by using a random-number 

generator in a computer and a value of 0.2 for 

the bias weighting. Note that, as the number 

of data increases, all the posteriors converge 

to a delta function centered at H = 0.2. In 

other words, as the experimental evidence 

increases, the assumptions embodied in the 

priors have less effect on our estimate of H. 

(a) The Priors (b) Evolution of Posteriors 

2 

1 

there must be a mapping that transforms the real numbers we have associated with 
the various propositions (to express our beliefs in them) to another set of positive real 
numbers that obeys the usual rules of probability theory: 

"Fair" 
Prior 

/-\ 
\ -: / \ 

/ \ 

/ "Ignorant" \\ 
/ Prior .. \ 

. / \ ..a. ... \ - . . .  "Crooked Prior. ..ye 
/ -.........-.- \ 

0-" I '. 

Pr(A, B ) = Pr(A [ B ) x Pr(B ) and Pr(A) + Pr(A) = 1, 

0 0.5 1 

where A represents the proposition that A is false. In other words, any method of 
logical and consistent reasoning (no matter what the context) must be equivalent to 
the use of ordinary probability theory, where the probabilities represent our beliefs or 
state of knowledge about various propositions or hypotheses in the Bayes-Laplace- 
Jeffreys sense. 

Bayes' theorem itself is just a simple corollary of these rules, but what does 
it really mean and why is it so powerful? Let us return to the coin-flipping prob- 
lem as a concrete but simple example. Again we are told that a coin was flipped n 
times and came up heads r times, but we don't know whether the coin was fair. Our 
problem is to infer the coin's bias-weighting for heads, call it H .  We will say that 
H = 0 represents a double-tailed coin (that is, a coin such that a head never appears), 
H = 0.5 represents a fair coin (that is, a coin such that its head is likely to come up 
as often as its tail), H = 1 represents a double-headed coin, and all other values of H 
(between 0 and 1) correspond to some intermediate bias-weighting. 

To carry out the inference, we need to specify our beliefs in the set of proposi- 
tions that, given the data, the value of H lies in a narrow range between h and h+Sh, 
where h can take on values between 0 and 1. In terms of a probability distribution 
for H ,  Pr(H = hl{data}), or simply Pr(H [{data}), we write 

lim Pr(h < H <, h + Sh 1 {data}) = Pr(H [ {data})dh. 
S h - 0  

Thus Pr(H /{data}), known as the posterior probability distribution (or simply the 
posterior), represents our state of knowledge about the bias-weighting for heads in 
light of the data. The value of h at which the posterior is a maximum gives our best 
estimate of the bias-weighting, and the spread of the posterior about the maximum 
gives our confidence in that estimate. If the posterior is sharply peaked, we are sure 
about our estimate; if it is broad, we are fairly uncertain about the true value of H .  

In order to determine Pr(H [{data}), we need to use Bayes' theorem, 

Pr(H 1 {data}) IX Pr({data} IH ) x Pr(H ), 

which relates the posterior to two other probability distributions, one of which can be 
"calculated" from the data and the other "guessed." 

The probability distribution Pr(H = h); or simply Pr(H), which also is defined 
for 0 <, h <: 1, represents our state of knowledge about the value of H before we 
are given the data. It is thus called the prior probability distribution (or simply the 
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prior). In the coin-tossing problem, if we are completely ignorant about the coin, we 
would assign a uniform prior, Pr(H) = constant = 1 for all values of h between 
0 and 1, to indicate that a priori all possible values of H are equally probable. If 
we do have other prior information, perhaps the results of previous data, then this 
information should be reflected in the nonuniform character of Pr(H). (Actually our 
statement of Bayes' theorem should read Pr(H 1 {data}, I )  oc Pr({data} IH , I )  x Pr(H [I) ,  
where I represents other prior information or prior assumptions.) Figure 3a shows 
three possible assignments for Pr(H), each reflecting a different assumption about the 
coin: the uniform, or ignorant, prior; a prior that assumes the coin is most likely to 
be double-headed or double-tailed; and a prior that assumes the coin has a head and a 
tail and is probably fair. 

Having specified our prior, we need now to consider the other probability dis- 
tribution in Bayes' theorem, Pr({data}\H), which reflects the nature of the "experi- 
ment." This probability distribution can be computed because it involves deductive 
logic. It is called the likelihood function because it tells us how likely it is that we 
would have obtained the data that we did if we had been given the value of H .  For 
our problem we are told that a coin was flipped n times and came up heads r times. 
If we assume that the data are independent (that is, the outcome of one flip did not 
affect the result of another) and that the bias-weighting is H ,  then the likelihood 
function is simply a binomial distribution: 

Pr({data}lH) = "C,. x H r  x (1 - H)"-', 

where "C,. = n!/r!(n - r)! is the number of ways of picking r objects (independent 
of order) from a choice of n. (Figure 1 shows such a binomial distribution.) 

Multiplying Pr(H) and Pr({data} IH), we obtain the posterior Pr(H 1 {data}), 
which summarizes all that we can infer about the value of H given the data. Fig- 
ure 3b shows how the posterior for each of the three priors in Fig. 3a changes as we 
are given more and more data. The data in this example were generated by using a 
random-number generator in a computer and setting H to 0.2. We find that as we ob- 
tain more data, we become more confident in our prediction for the inferred value of 
H (that is, the width of each posterior decreases) and our prior state of knowledge, 
as expressed in Pr(H), becomes less important (that is, no matter what our prior as- 
sumptions were, the posteriors converge to the same answer when enough data are 
available). 

The power of Bayes' theorem is that it effectively provides the only consistent 
bridge between the inductive logic (or indirect probabilities) required for scientific 
inference and the deductive logic (or direct probabilities) that we know how to use. 
Generalizing, we see that Bayes' theorem encapsulates the process of "learning": 

Pr("hypothesis"1 {data}, I )  oc Pr({data} ["hypothesis", I ) x Pr("hypothesis"l1 ), 
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where the "hypothesis" is the quantity that we wish to infer (the bias-weighting of a 
coin, for example, or the neutron scattering law for some sample) and I represents 
any prior knowledge we may have about the "hypothesis." The prior probability dis- 
tribution, Pr("hypothesis", I ) ,  reflects our knowledge (or ignorance) about the "hy- 
pothesis" before we obtained the data. This prior state of knowledge is modified by 
the likelihood function, Pr({data}["hypothesisW, I) ,  which encodes the nature of the 
"experiment" and involves the use of deductive logic, to yield our posterior proba- 
bility distribution, Pr("hypothesis"~ {data}, I ) ,  which represents our state of knowl- 
edge about the "hypothesis" after we have obtained the data. What we infer about 
some quantity of interest depends not only on the data we have but also on what we 
know or assume about it a priori! If the data are accurate, abundant, and sensitive 
to the quantity of interest, then the likelihood function will be sharply peaked and 
will dominate the posterior probability distribution. No matter what our prior state of 
knowledge, the data force us to the same conclusion. If the data are inaccurate, few 
in number, or insensitive to the quantity of interest, then the posterior will depend 
crucially on our prior. In other words, if the data do not tell us very much, then our 
state of knowledge after we have obtained the data will be governed largely by our 
state of knowledge (or ignorance) before the experiment. 

Just as Newton's second law of motion is central to all classical mechanics, 
Bayes' theorem provides the fundamental rule for all logical and consistent induc- 
tive inference. Many statistical tests and procedures can be derived, justified, or at 
least understood from Bayes' theorem when one states the relevant assumptions and 
details about the situation under consideration. Model fitting, least squares, maximum 
likelihoods, singular-value decomposition, the maximum entropy method, Tikhonov 
regularization, Fourier filtering, the x2 test, the F test, Student's t test, and other sta- 
tistical procedures for analyzing data can all be seen as suitable courses of action for 
different choices or assumptions about three things: the prior information I ,  which 
can even determine what we mean by "hypothesis"; the prior probability distribution, 
Pr("hypothesis"~I); and the nature of the experiment, which is enshrined in the likeli- 
hood function, Pr({data} ["hypothesis", I ) .  

The Maximum Entropy Method 

The data-analysis method known as maximum entropy (MaxEnt) arises in the 
context of a specific but commonly occurring problem-that of making inferences 
about positive and additive distributions. The neutron scattering law S (Q, E )  for a 
sample is an example of such a positive and additive distribution. It is positive be- 
cause S (Q , E)dQdE is proportional to the number of neutrons scattered with momen- 
tum transfer between Q and Q + dQ and energy transfer between E and E + dE. 
It is additive because the number of neutrons scattered into a large AQAE inter- 
val is equal to the sum of the neutrons scattered into the small dQdE intervals that 
compose the large AQAE interval. Other examples of positive and additive dis- 
tributions include probability distribution functions, the radio-frequency brightness 
function of an astronomical source, the electron density in a crystal, the intensity of 
incoherent light as a function of position in an optical image, and so on. (By con- 
trast, the amplitude of incoherent light is positive but not additive.) Given only the 
information I that the quantity of interest is a positive and additive distribution f ,  
what should we assign as the prior probability distribution Pr (f I/)? The assignment 
of a prior is often a difficult problem. Bayes' theorem tells us that the prior is a nec- 
essary and integral part of making a scientific inference, but the theorem does not tell 
us how to assign it. Methods that seem to avoid the use of a prior merely make an 
implicit choice (usually of a uniform distribution) rather than state an explicit choice. 
(Luckily, as mentioned above, the prior does not matter very much when we have 
"good" data.) 
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The choice of a prior usually involves somewhat obscure arguments and fre- 
quently involves a consideration of the allowed transformation groups that specify 
our ignorance about the quantity of interest. For example, consider the problem of 
estimating the length L of a biological molecule. What prior Pr(L) should be as- 
signed to express complete ignorance about the value of L before we have carried out 
any measurements? Well, if we are really ignorant about the size of the molecule, 
then we should assign the same prior for the numerical value of L irrespective of 
whether we make the measurement in meters, inches, cubits, or whatever. The vari- 
able L would then be a so-called scale parameter. To express our complete igno- 
rance about the value of a scale parameter, we say that the prior must be invari- 
ant under a change of scale in the measurement units. Mathematically we require 
that Pr(L)dL = Pr((3L)d(f3L) for all values of /3 2 0, leading us to the assignment 
Pr(L) oc 1/L, or a uniform prior for log L : Pr(1og L) = constant. 

The appropriate prior for a positive and additive distribution is, again, not im- 
mediately obvious. Many different types of arguments, however, including logical 
consistency, information theory, coding theory, and combinatorial arguments, lead us 
to believe that the prior is of a rather special form: 

Here the (prior) information I assumes only that f is positive and additive, and S is 
the generalized Shannon-Jaynes entropy: 

In this general expression for entropy, m(x) is a Lebesgue measure on x, the space 
of the distribution, and a is a dimensional constant (initially unknown). We will say 
more about what this entropic prior means (and the value of a )  a little later, but let 
us continue by considering m(x) further. 

In the absence of any data, the posterior becomes directly proportional to the 
prior, and our best estimate off is given by the maximum of the entropy function 
S , which occurs at f (x) = m(x). The function m(x) is therefore a default model 
(that is, the solution to which f will default unless the data say otherwise) and can 
be thought of as representing our prior state of knowledge, or ignorance, about f .  
The default model is usually taken to be uniform (that is, constant), but the use of a 
nonuniform m(x) can be important for such difficult problems as protein crystallogra- 
phy or for introducing spatial correlations across the positive and additive distribution 
we want to infer. IPwe know that f is normalized, so that f f (x)dx is fixed, and if 
the Lebesgue measure is uniform (m(x) = constant), then the entropy formula above 
reduces to the form 

which is the form of the entropy familiar from statistical mechanics. 
The other quantity we need in order to make an inference about the distribution 

f is the likelihood function Pr({data}l f ,  I). The likelihood function incorporates the 
information about the experiment, whether it is a neutron-scattering experiment, a 
nuclear-magnetic-resonance experiment, a radio-astronomy experiment, or whatever. 
It relates the quantity of interest to the data we have, thereby encoding details about 
the type of experiment and the accuracy of the measurements. 

Let us consider the common case in which the data are independent (one mea- 
surement does not affect another) and are subject to additive Gaussian noise. The 
likelihood function then takes the form 
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where x2 is the familiar misfit statistic, which measures how well a trial distribution 
f fits the actual data: 

Here Dk is the kth datum (say the number of neutron counts in the kth bin), C T ~  is 
the noise, or expected error, in that datum (for a neutron-scattering experiment, a = 
a), and Fk is the value for the kth datum that a trial distribution f would have 
produced in the absence of any noise. The noise in the neutron counts, though really 
described by a Poisson distribution, is approximated well by a Gaussian distribution 
because the number of counts is usually large (2 10). Thus the usual model fitting 
corresponds to assuming the likelihood function in Eq. 4 and maximizing that func- 
tion to obtain the best "fit" to the data (that is, implicitly assuming a uniform prior so 
that the posterior becomes directly proportional to the likelihood function). 

According to Bayes' theorem we must combine Eq. 3, the entropic prior, with 
the likelihood function of Eq. 4 to find the posterior probability distribution for f :  

Then, given the data and only the prior knowledge that f is a positive and additive 
distribution, our best estimate off is given by the distribution that maximizes this 
posterior probability distribution. Since the exponential is a monotonic function, we 
obtain the solution by maximizing aS - ix2 (a general algorithm to do this is given 
in Bryan and Skilling 1984). This procedure can be interpreted as maximizing the 
entropy S subject to some constraint on the value of the misfit statistic x2,  where 
the initially unknown constant a is seen as a Lagrange multiplier. Hence the name 
maximum entropy method. The method is illustrated schematically in Fig. 4. 

In past applications of the maximum entropy method, the constant a was chosen 
such that x2 = N ,  where N is the number of data. This choice seems intuitively rea- 
sonable since any proposed distribution f should give data consistent with those actu- 
ally measured, as defined by the constraint that x2 < = N .  The MaxEnt method was 
thus seen as choosing a distribution f that, while "fitting the data," had the most en- 
tropy. More recent thinking (Skilling and Gull 1989), however, carries the Bayesian 
logic one step further: Since a is unknown, it becomes just one more parameter that 
needs to be estimated in the same sense that we are trying to estimate f .  This ap- 
proach, which leads to a slightly more complicated (but less ad hoc) criterion for the 
choice of a, has the advantage that the increased rigor allows us to automatically de- 
termine a, the level of the noise, or expected error, in the measured data if it is not 
known. We leave these and other recent advances, including a discussion of practi- 
cal reliability estimates of the inferred distribution f ,  to the avid reader (see Further 
Reading) and continue to pursue the more traditional approach to the MaxEnt method 
and its applications. 

The Meaning of Maximum Entropy 

Well, we have talked about the entropic prior, but what is its significance and 
what does it mean? To answer this question, we will use two very simple examples. 
The first, known as the kangaroo problem, is an example of having accurate but in- 
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sufficient data. Nevertheless the problem is small enough that common sense tells 
us what constitutes a "sensible" solution. It will be shown that the MaxEnt choice, 
unlike several commonly used alternatives, concurs with our common sense. We will 
then use a second example, known as the monkey argument, to try to give a more 
general interpretation of the MaxEnt solution. 

The Kangaroo Problem. We have said that in the MaxEnt method we choose, as 
our best estimate of a positive and additive distribution f, the f that agrees with the 
data and has the most entropy. This method of choosing a solution by maximizing 
some function of the desired distribution is known as regularization. The Shannon- 
Jaynes entropy is an example of a regularizing function, but several others are also 
commonly used. We will follow Gull and Skilling (1984) in using the kangaroo 
problem to demonstrate our preference for the choice of the Shannon-Jaynes entropy 
over the alternatives. The kangaroo problem, a physicists' perversion of a formal 
mathematical argument (Shore and Johnson 1980), shows that the Shannon-Jaynes 
entropy is the only regularizing function that yields self-consistent results when the 
same information can be used in different ways (for example, the choice of coordi- 
nate system should not matter). The kangaroo problem is as follows. 

Information: One-third of all kangaroos have blue eyes, and one-third of all 
kangaroos are left-handed. 

Question: On the basis of this information alone, what proportion of kangaroos 
are both blue-eyed and left-handed? 

Clearly, we do not have enough information to know the correct answer: All 
solutions of the type shown in the 2 x 2 contingency table of Fig. 5a agree with the 
data and thus constitute the feasible set of solutions. Without additional information, 
each solution is equally likely because they all fit the data exactly. Figure 5b shows 
three among the myriad of feasible solutions: namely, the one with no correlation 
between being blue-eyed and left-handed and the ones with the maximum positive 
and negative correlation. Although the data do not allow us to say which is the cor- 
rect answer, our common sense compels us to choose the uncorrelated solution if 
we are forced to make a choice. That is to say, unless we have prior knowledge to 
the contrary, we do not expect that knowing the eye color of a kangaroo will tell us 
anything about whether the kangaroo is left-handed or right-handed. Thus our best 
estimate is that one-ninth of the kangaroos will be blue-eyed and left-handed. 

Table 1 shows the results of selecting the solution by maximizing four com- 
monly used regularizing functions. Note that the integral in the formula for the en- 
tropy, for example, has been replaced by a summation because the space of the dis- 
tribution, x, is not continuous but discrete. In fact, it consists of just four pixels- 
the four boxes in the 2 x 2 contingency table. For this very simple example, where 

THE MAXIMUM ENTROPY METHOD 

Fig. 4. Suppose that we are trying to find 

the "best" estimate for some positive and 

additive distribution f(x). Suppose further 

that the'hypothesis space of f is defined 

by the values of f specified on a grid finely 

discretized with respect to x into N pixels. 

In other words, the hypothesis space of f is 

the N-dimensional space whose coordinate 

axes are the set {fi}, where f j  is the value 

of f at pixel j. Shown here is a schematic 

two-dimensional section, namely the fmfn 

plane, through the hypothesis space. Plotted 

(in red) are contours along which -y2, (twice) 

the logarithm of the likelihood function, is 

constant; the set {fie} for which x2 < EN 

(the number of data) compose the feasible 

set of distributions allowed by the data. 

Also plotted (in green) are contours along 

which the entropy S (the logarithm of the 

prior probability distribution) is constant; the 

entropy is a maximum at the default model 

f = m (where m is a Lebesgue measure on 

the hypothesis space) and rapidly approaches 

-00 as any part of f becomes negative. 

The MaxEnt solution is that f for which the 

posterior probability distribution is maximum, 

that is, the f for which 9/9fj(aS - lx2)  = 0. 

The blue line indicates the trajectory of the 

MaxEnt solution as the value of the Lagrange 

multiplier a goes from oo to 0; the blue star 

represents the traditional choice of a, which 

satisfies the condition that y2 = N. 
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TRUTH TABLES FOR 
THE KANGAROO PROBLEM 

(a) General Feasible Solution (b) Three Specific Solutions 

Fig. 5. (a) This truth table illustrates the 

general feasible solution to the kangaroo 

problem. That solution is obtained by letting 

x = f, be the fraction of kangaroos that are 

blue-eyed and left-handed, where 0 < x < i. 
Then the fractions corresponding to the other 

contingencies (f2, f3, and f s )  can be expressed 

in terms of x. (b) These truth tables illustrate 

three specific solutions derived by setting 

x to -, which corresponds to no correlation 

between being blue-eyed and left-handed, 

and by setting x to 1 or 0, which correspond 

respectively to maximum positive or negative 

correlation between the traits. 

Left-Handed Left-Handed 

No Correlation 

common sense tells us the "best" answer when faced with insufficient (but noise- 
free) data, it is only the Shannon-Jaynes entropy that yields a sensible answer! (Al- 
though we have considered only four regularizing functions, it can be shown that the 
Shannon-Jaynes entropy is the only one that has this desired property.) 

Before going on to consider a more general interpretation of the MaxEnt choice, 
it is worth commenting on the frequently heard statement that in data analysis (or 
image reconstruction) positivity is the important constraint, not how you enforce it. 
For large problems that statement is very often true. Our small kangaroo problem, 
however, magnifies the differences among the regularizing functions and shows that 
we get more from MaxEnt than just positivity. The way we have set up the prob- 
lem in Fig. 5a has the positivity constraint already built in, but it is still not suffi- 
cient to make a choice on the basis of the data we are given. The f regularizing 
function, for example, which for the kangaroo problem corresponds to the "Tikhonov 
with positivity" that some people seek, does not yield the same solution as our com- 
mon sense~only  MaxEnt does! Many general image-processing methods (both ad 
hoc and sound) often give similar results. The similarity merely reflects the fact that 
the prior probability distribution does not usually matter very much when the data are 
"good." However, if we assume only that the quantity of interest is a positive and 
additive distribution and ask what is the appropriate choice for the prior, the answer 
is the entropic prior. 

The Monkey Argument. Our common sense recommended the uncorrelated so- 
lution to the kangaroo problem because, intuitively, we knew that it was the most 
noncommittal choice. The data did not rule out correlation, but, without actual evi- 
dence, it was a priori more likely that the genes controlling handedness and eye color 
were on different chromosomes than on the same one. Crudely speaking, if we con- 
sider randomly scattering two genes among eight chromosomes, they are seven times 
more likely to land on different chromosomes than on the same one. Although we 
cannot usually appeal to specific knowledge such as what is known about genes and 
chromosomes, we can use the monkey argument (Gull and Daniel1 1978) to see more 
generally that the MaxEnt choice is the one that is maximally noncommittal about the 
information we do not have. 

The monkey argument can again be thought of as a physicists' perversion of 
formal mathematical work, that of Shannon (1948) showing that entropy is a unique 
measure of "information content." The words "information content" are being used 
here in the information-theory sense and have somewhat the opposite sense of their 
everyday use! We might better think of entropy as a measure of uncertainty (rather 
than as a measure of information) because uncertainty is closer to the idea of the lack 
of order that characterizes entropy. However, a system that has more entropy has a 
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Left-Handed 
T F 

Left-Handed 
T F 

Maximum Positive Correlation Maximum Negative Correlation 

greater degree of randomness, and its description requires more information (more 
bits in a computer). It is in this sense, then, that entropy is a measure of information. 

The monkey argument presents the MaxEnt solution in graphic terms. Imagine 
a large team of monkeys who make images, or positive and additive distributions, 
by randomly throwing small balls of light at a rectangular grid. After a while, the 
grid is removed and replaced by another and so on. Eventually, the monkeys will 
generate all possible images, and many copies of each one. If we want an image of 
an object about which we have some experimental data, we can reject most of the 
monkey images because they give data that are inconsistent with the experimental 
measurements. Those images that are not rejected constitute the feasible set. If we 
are to select just one image from this feasible set as representing our best estimate 
of the object, the image that the monkeys generate most often would be a sensible 
choice. Because our hypothetical team of monkeys is presumed to have no particular 
bias, such a choice represents the image that is consistent with the measured data but, 
at the same time, is most noncommittal about the information we do not have. This 
preferred image is the MaxEnt solution, because the entropy is just the logarithm of 
the number of ways in which the image could have been generated (and, hence, the 
number of times it was). 

Applications of MaxEnt at LANSCE 

MaxEnt has been used successfully in image reconstruction in a wide variety 
of fields (see, for example, Gull and Skilling 1984). A small selection of its diverse 
applications, shown in Fig. 6, include forensic deblurring, radio astronomy, medical 
tomography, and nuclear-magnetic-resonance spectroscopy. We are now starting to 
use this powerful technique, and Bayesian ideas in general, to enhance the analysis of 
neutron-scattering data at LANSCE. 

The Filter-Difference Spectrometer. The first example of the use of MaxEnt at 
LANSCE is the analysis of data from the Filter-Difference Spectrometer, or FDS. 
This example has the form of a standard convolution problem. That is, the data are 
related to the quantity of interest through a blurring process, so that they are a blurred 
(and noisy) version of what we want. 

Our own eyes produce such a convolution, or blurring. Because the pupils of 
our eyes have a finite size, we do not see point sources of light as infinitesimal dots 
but as small fuzzy disks. (The angular size of the disk is roughly A/d, where A is 
the wavelength of the light and d is the diameter of the pupil.) If two point sources 
of light are so close that the disks overlap, we can no longer distinguish them as sep- 
arate entities. Such blurring, response, resolution, or point-spread functions occur al- 

Table l 

REGULARIZATION-FUNCTION 
SOLUTIONS OF 
KANGAROO PROBLEM 

Listed here are values of x (fraction of kan- 

garoos that are blue-eyed and left-handed) 

derived by maximizing four commonly used 

regularizing functions. Of the four only the 

Shannon-Jaynes entropy, - E // log //, 
yields a value for x that agrees with our 

common sense, which tells us that, in the 

absence of relevant data, the two traits are 

most likely to be uncorrelated. 

Regularizing 

Function A Correlation 

E f j l o g f j  0.111 ..., or $ None 

-Ef 0.083. . ., or Negative 

E log fj 0.13013 Positive 

Edj 0.12176 Positive 
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SOME APPLICATIONS OF THE 
MAXIMUM ENTROPY METHOD 

Fig. 6. The examples presented here, which 

are reproduced through the courtesy of 

J. Skilling and S. F. Gull, show how the 

maximum entropy method can be used to 

clarify the information extracted from a variety 

of data. 

MaxEnt image of radio-frequency 
(5-gigahertz) emissions from the 
supernova remnant Cassiopeia A 

Comparison of (top) conventional Fourier 
reconstruction and (bottom) MaxEnt recon- 
struction of a nuclear-magnetic-resonance 
spectrum 

most universally in all experiments. The resolution functions of particular interest in 
neutron-scattering experiments arise from various aspects of the experimental setup, 
such as the finite size and temperature of the moderator and the finite angle of col- 
limation of the neutron beam. In the case of the FDS, the major contribution comes 
from the transmission spectrum of the polycrystalline filters used to select for record- 
ing those inelastically scattering neutrons with certain final energies. 

For those not familiar with the idea of a convolution, or the performance of 
MaxEnt, we start with a simple simulated example computed on a grid of 128 points. 
Suppose that the "true" object, or neutron scattering law, consists of two spikes on 
the left separated by a small plateau and a broader peak on the right, as shown in 
Fig. 7a. Also suppose that a noisy data set (Fig. 7c) is generated by first convolving 
the scattering law with a resolution function (Fig. 7b) that is similar to the transmis- 
sion spectrum of the filters used in the FDS and then adding to the resulting blurred 
signal a small background count and random noise. In a convolution each point of 
the object (pixel) is replaced with a copy of the resolution function scaled by the 
"height" of the object at that point; the data are then the sum of all the scaled copies 
of the resolution function. As can be seen from Figs. 7a and 7c, a large single spike 
can give much the same data as a smaller broad peak. Mathematically, using matrix 
and vector notation, we can write the "experiment" as 

Here d is the data vector, the matrix 0 is the convolution operator (Ojk = rk-,, 
where r is the resolution function), f is the scattering law, b is the background, and 
(T is the root-mean-square value of the random noise ((02) = dk). Given the data 
set and a knowledge of the resolution function and background, we wish to infer the 
underlying scattering law. A simple way of performing the deconvolution is to ap- 
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(a) Test Scattering Law (d) Direct Inverse 

(b) Resolution Function 

(c) Simulated Data 

(e) "Smoothed" Direct Inverse 

(f) MaxEnt Reconstruction 

ply the inverse convolution operator 0 '  to d - b by using Fourier transforms. This 
procedure is equivalent to making the assumption that the prior is uniform, Pr(f) = 
constant, and determining the maximum-likelihood solution. Unfortunately, the in- 
verse solution may not exist. For example, the maximum-likelihood solution may not 
be unique because of missing data. Furthermore, even when the inverse does exist, 
it produces a reconstruction of the scattering law (Fig. 7d) that has a lot of high- 
frequency ringing (wiggles). To overcome this difficulty, it is common practice to 
use a smoothed (or slightly blurred) version of the direct inverse, a procedure known 
as Fourier filtering (Fig. 7e). In the grand scheme of things, Fourier filtering can be 
regarded as an example of singular-value decomposition. An alternative approach 
is to use the fact that the scattering law is a positive and additive distribution and 
hence choose an entropic prior (Pr(f\I) oc exp(aS)) and thus obtain the MaxEnt solu- 
tion shown in Fig. 7f. We find that the maximum entropy method has suppressed the 
level of the artifacts without sacrificing as much detail in the reconstruction as does 
Fourier filtering. 

Now, let us turn from simulated data to real data. The FDS is an instrument 
used to perform molecular rotational-vibrational spectroscopy with neutrons rather 
than with photons, as in infrared or Raman spectroscopy. Figure 8a shows data taken 
with a beryllium filter imposed between the sample and the detector. Those data 

DECONVOLUTION 
OF SIMULATED DATA 

Fig. 7. The power of the maximum entropy 

method is illustrated by its application to a 

simulated data set. The simulated data set 

(c) was obtained by convolving a test scat- 

tering law (a) with an instrumental resolution 

function (b) and then adding a small back- 

ground and random noise. (The instrumental 

resolution function shown in (b) is similar 

to the transmission spectrum of the filters 

used in the Filter-Difference Spectrometer at 

LANSCE). The series (d), (e), and (f) com- 

pares reconstructions, or deconvolutions, of 

the mock scattering law produced by three 

methods. 
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DECONVOLUTION OF INELASTIC- 
NEUTRON-SCATTERING DATA 

Fig. 8. Shown in (a) are inelastic neutron- 

scattering data obtained with the Filter- 

Difference Spectrometer at LANSCE. Such 

data are the basis for deducing the energy 

levels of the molecular vibrations and ro- 

tations excited in a sample by the incident 

neutrons. (Here the sample is hexamethy- 

lene tetramine at 15 kelvins; its well-known 

rotational-vibrational spectrum is used to 

calibrate the energy-transfer values deduced 

from the recorded times of flight and the 

energy-cutoff points of the filters.) The raw 

data shown in (a) are a convolution of the true 

rotational-vibrational spectrum of the sample 

with the transmission spectrum of a beryllium 

filter located between the sample and the 

detector. (That transmission spectrum is 

similar to the resolution function shown in 

Fig. 7b.) Shown in (b) is the "filter-difference" 

spectrum, a hardware deconvolution of the 

data in (a) derived by subtracting the raw data 

in (a) from raw data obtained with a beryllium 

oxide filter. (The transmission spectrum of 

a beryllium oxide filter differs from that of a 

beryllium filter mainly in being slightly shifted 

in energy.) The filter-difference spectrum is 

inverted relative to the raw data plot because 

the abscissa in (a) is (essentially) the time 

of flight of the scattered neutrons whereas 

the abscissa in (b) (and (c) and (d)) is the 

energy transferred to the sample. Shown in 

(c) is the MaxEnt reconstruction of the data in 

(a). The MaxEnt reconstruction and a filtered 

inverse, or "Mezei," reconstruction (dots) are 

compared in (d). 

(a) Raw Data (Beryllium Filter) (b) "Filter-Difference" Spectrum 

Channel Number 

(c) MaxEnt Reconstruction 

Energy Transfer (meV) 

Energy Transfer (cm-l) 

(d) MaxEnt and Mezei Reconstructions 

Energy Transfer (cm-l) 

show the effects of the sharp edge and long decaying tail of the transmission spec- 
trum of the filter (see Fig. 7b). The earliest method used to remove the blurring 
produced by such a resolution function is a hardware solution. Two data sets are 
collected, one consisting of the scattered neutrons transmitted through a beryllium 
filter and the other consisting of the scattered neutrons transmitted through a beryl- 
lium oxide filter. The transmission spectra of the two filters have almost the same 
shape, but their sharp energy cutoffs are slightly offset. Therefore, the data set ob- 
tained with one filter differs from the data set obtained with the other filter mainly in 
being shifted in energy by a small amount. When the two data sets are subtracted, 
the contributions from the long decaying tails (and background) tend to cancel, and 
only the significant features defined by the sharp rising edges remain. Figure 8a 
shows raw data obtained with only the beryllium filter plotted in data channels cor- 
responding to increasing neutron time of flight. Figure 8b shows the correspond- 
ing "filter-difference" spectrum plotted as a function of energy transfer. The filter- 
difference spectrum is inverted relative to the data plot because increasing time of 
flight is equivalent to decreasing energy transfer. 

Given only the data obtained with the beryllium filter and knowledge of the fil- 
ter's transmission spectrum and the background, the deconvolution can be carried out 
mathematically (in software) by using the maximum entropy method. The MaxEnt 
reconstruction thus obtained is shown in Fig. 8c and is compared in Fig. 8d with a 
conventional reconstruction (due to Mezei) that can be interpreted as a filtered in- 
verse. As expected, the MaxEnt reconstruction is an improvement over both the 
filter-difference and the Mezei deconvolutions in that it shows finer detail and fewer 
noise artifacts. The improvement is obvious but not dramatic because the data have 
good statistical accuracy. Noisier data causes the filtered inverse solution to deterio- 
rate much more rapidly than the MaxEnt solution. 
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THE FOURIER PHASE PROBLEM 

The Low-Q Diffractometer. The next application of the maximum entropy method 
involves the analysis of data that reflect the aggregation of biological macromolecules 
in solution. These data were taken on the Low-Q Diffractometer, a small-angle neu- 
tron-scattering (SANS) instrument useful for studying structures with dimensions 
ranging from 10 to 1000 angstroms. The spatial distribution of particles in a Sam- 
ple (including their size, shape, and location) is related to the neutron scattering law 
through a Fourier transform-in general, a complex quantity. (The elements of the 0 
matrix for a Fourier transform are of the form Ojk = exp(i27rjk/N), where i2 = - 1 
and N is the number of points in the discrete Fourier transform.) The neutron counts 
we measure are, of course, given by the Fourier intensities (or a blurred and noisy 
version thereof). We are thus brought face-to-face with the dreaded Fourier phase 
problem! The Fourier phase problem entails trying to make an inference about some 
quantity of interest given information about only the amplitudes (but not the phases) 
of its Fourier transform. It is a notoriously difficult problem, well known in x-ray 
crystallography, because the many local maxima of the likelihood function make it 
hard for us to find the global maximum of the posterior probability. The gravity of 
the situation is illustrated by Fig. 9. Luckily, we are not interested in determining 
the relative locations of the particles but only the number of particles of a given size 
and shape. Thus our problem is analogous to the problem in x-ray crystallography of 
determining not the electron-density map but only the autocorrelation (or Patterson) 
function, for which the Fourier intensities alone are sufficient. 

The particles under study are involved in the digestion and transport of fats. My 
biologist colleague at LANSCE, Rex Hjelm, introduced me to the problem by say- 
ing: "Your body is mostly water. If you visit your favorite ice-cream parlor, then 
the fat in the ice cream will form a greasy blob at the bottom of your stomach and 
you will soon die!" He then told me that bile salts, produced in the liver, had hy- 

Fig. 9. Image (c) is a Fourier reconstruction 

obtained by using the Fourier phases of image 

(a) and the Fourier amplitudes of image (b); 

image (d) is a Fourier reconstruction obtained 

by using the Fourier phases of image (b) and 

the Fourier amplitudes of image (a). These 

two reconstructions demonstrate that most 

of the Information in a Fourier transform is 

contained in the phases rather than in the 

amplitudes. 
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DIGESTION OF FATS 

Fig. 10. The digestion of dietary fats begins 

with their emulsification by complexes of 

bile-salt and lecithin molecules. Bile salts 

(glycocholate and taurocholate) are polar 

derivatives of cholesterol. Shown in (a) 

are the structural formula and a schematic 

diagram of glycocholate. (Polar groups 

are denoted in the schematic diagram by 

circles.) Taurocholate differs in that the 

terminal carboxyl group (CO;) is replaced by 

the group H2CÃ‘803 Although glycocholate, 

say, is itself an effective emulsifier, complexes 

of glycocholate and the lipid lecithin are, for 

reasons not yet known, even more effective. 

Shown in (b) are the structural formula and a 

schematic diagram of lecithin, or phosphatidyl 

choline. Aiding the digestion of fats is not the 

only physiological function of lecithin; it also 

is a major constituent of the lipid bilayers that 

compose biological membranes. 

(a) Glycocholate 

0 
II 40 

C\ ,C\ ,C-N-CH2-C\o- 
H O C C H  

u 
Rigid Planar Steroid 

Ring Structure 

(b) Lecithin 
0 
I I 

HnC-(CH2)i4- C - 0 -  CH2 
I 

Fatty-Acid Hydrophilic Head 

Double Carbon Bond 

drophylic heads and hydrophobic tails (Fig. lOa). "So the body dumps in some bile 
salts to act as detergents," I remarked, somewhat relieved. "No, that's what an engi- 
neer would do!" came the reply. For reasons that we do not fully understand, nature 
uses a conglomerate of bile salts and the fat lecithin (Fig. lob) to begin the digestion 
process. 

An understanding of the action of bile salts in lipid digestion and in the trans- 
port of liver products such as cholesterol has potential applications in industrial pro- 
cesses and in the development of drug-delivery systems and model membranes. As 
a step in this direction, Hjelm et al. (1990) have been investigating the nature of par- 
ticle growth in aqueous solutions of lecithin and the bile salt glycocholate. Figure 
1 la  shows SANS data sets for three increasingly dilute solutions. Hjelm asked the 
following question: If I assume that the particles in the sample can be modeled as 
cylinders of uniform density, what is my "best" estimate of their size distribution, 
given the data and a knowledge of the experimental setup? Since SANS data are not 
sensitive to fine structure, the sharp edges of the cylinders are of little consequence; 
all that we are really assuming is that the particles are "blobs" of uniform density de- 
fined by a length and a diameter. Moreover, the fact that the distribution of particle 
sizes is a positive and additive quantity means that the relevant prior for the distri- 
bution of particle sizes is an entropic prior! Figure 1 l b  shows the particle-size dis- 
tributions derived by using MaxEnt on the data in Fig. 1 la. The distribution for the 
highest lipid concentration indicates the presence of only a single type of particle, 
roughly globular, with a diameter of about 50 angstroms. As the sample is diluted, 
evidence for a second type of particle appears, a rod-like structure with a diameter of 
about 50 angstroms and a length of about 100 angstroms, or twice the original length. 
Even greater dilution leads to the appearance of even more elongated particles with 
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(a) Small-Angle Neutron-Scattering Data 

Momentum Transfer, 0 (A") 
(b) Cylinder-Size Distributions 

50 100 150 

Cylinder Height, H (A) 

a length of about 170 angstroms, or three to four times the original length. These re- 
sults lead us to believe that particle growth occurs through aggregation of preformed 
subunits with a size of about 50 angstroms (which corresponds nicely to the thick- 
ness of lecithin bilayers) rather than through the aggregation of individual bile-salt or 
lecithin molecules. 

This example shows that the data need not bear any visual resemblance to the 
information extracted; in other words, MaxEnt is a method for data analysis, or scien- 
tific inference, and not just image enhancement. 

The Constant-Q Spectrometer. Our last example involves data from the Constant- 
Q Spectrometer (CQS), an instrument designed to investigate phonons and magnons 
i n  single-crystal samples. The example illustrates a more advanced use of MaxEnt- 
multichannel entropy. This method is needed for convolution problems in which we 
want to determine not only the (sharp) scattering law of interest but also a broad, un- 
known background signal. We will begin with a simple simulation to illustrate multi- 
channel entropy and then demonstrate its use on real data from the CQS. 

For our simulation we convolve the scattering law of Fig. 7a with the resolution 
function of Fig. 7b (scaled down by a factor of about 10) and then add a large back- 
ground, assumed to be unknown, to generate the noisy data set shown in Fig. 12a. 
To analyze these data we use the technique of two-channel entropy. We assume that 
the unknown background h is also a positive and additive quantity and is fairly broad 
compared with the scattering law f .  What we are attempting to do is an example of 
multichannel entropy because we are trying to make our best inference about several 
different "images" simultaneously. In this case we have only two channels: one for 
the background and the other for the scattering law. We set up two image channels, 

PARTICLE GROWTH 

Fig. 11. Information about the sizes of 

glycocholate-lecithin complexes in an aque- 

ous solution can be obtained by analysis of 

small-angle neutron-scattering data for the 

solution. Shown in (a) are such data (Hjelm 

et al. 1990) for increasingly dilute solutions. 

(The concentrations indicated are total con- 

centrations of glycocholate plus lecithin.) 

The corresponding particle-size distributions, 

shown in (b), were derived by assuming that 

the complexes are adequately represented 

by cylinders of radius R and height H and 

then using the maximum entropy method to 

determine the most probable distribution of 

cylinder sizes. Note that increasing dilution 

is accompanied by the appearance of popula- 

tions of cylinders whose radii do not change 

significantly but whose heights increase by 

approximately integral multiples. 
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(a) Simulated Data 

(b) MaxEnt Reconstruction: Background 

(c) MaxEnt Reconstruction: Signal 

TWO-CHANNEL DECONVOLUTION 
OF SIMULATED DATA 

Fig. 12. (a) Two-channel entropy is an example 

of an advanced use of the maximum entropy 

method. It allows deconvolution of data into 

two components, such as a scattering law 

with sharp features and a relatively featureless 

background. Application of the two-channel 

entropy method to the simulated data in (a), 

which were generated by convolving the scat- 

tering law and the resolution function shown 

in Fig. 7a and Fig. 7b and then adding a large, 

unknown background, yields the background 

and scattering-law reconstructions shown, 

respectively, in (b) and (c). 

fl and f2. One channel is allowed to have only broad structure (by construction); the 
other is permitted the full resolution of the 128-pixel grid. We also arrange the prob- 
lem so that the "entropic cost" of putting structure in the broad channel is very low 
relative to the cost of putting structure in the high-resolution channel. What do we 
mean by entropic cost? Recall that the absolute maximum of entropy occurs when 
f is the same as the default model m. But as f deviates from m, in order to become 
consistent with the data, the entropy decreases, and that decrease in entropy is what 
we mean by entropic cost. Thus by making the entropic cost of putting structure in 
the broad channel relatively low, we ensure that if a broad distribution can account 
for the data, it will appear in the broad channel. If sharp structure is required, it can 
appear only in the high-resolution channel. We identify the high-resolution channel 
with the scattering law and the broad channel with the unknown background. Carry- 
ing out this procedure (for details see Sivia 1990), we obtain the MaxEnt reconstruc- 
tions for the background and scattering law shown in Figs. 12b and 12c. Although 
the image of Fig. 12c is not as good as that of Fig. 7f, it is still a very impressive 
reconstruction in light of the given data (compare Fig. 7c with Fig. 12a!). 

Finally, we show the application of this two-channel entropy algorithm to real 
data on the inelastic scattering of neutrons from phonons and magnons in a sample 
of iron. The data (Yethiraj et al. 1990) are shown in Fig. 13a as a function of the ex- 
perimental variables: time of flight and detector angle. The data suffer from a com- 
bination of broadening and an unknown background signal (in addition to \/N noise) 
that obscures the scattering law of interest. The MaxEnt reconstruction of the signal, 
or high-resolution, channel (Fig. 13b) shows a dramatic improvement in both the de- 
tail seen in the scattering law and in the reduction of background artifacts. When the 
scattering law is plotted in terms of the physically meaningful coordinates of energy 
and momentum transfer (Fig. 13c), we can easily identify the dispersion curves for 
the magnon and phonon excitations characteristic of iron. 

Instrument Design 

The examples of the use of MaxEnt given in the last section are all cases of do- 
ing the "best" with the data we have. Usually that is all we can do. The instrumen- 
tation and hardware already exist at facilities like LANSCE, and often the only free- 
dom a user has to improve the quality of the data is to increase its statistical accuracy 
by collecting data for a longer time. Let us suppose, however, that we are going to 
build a new facility, or just a new spectrometer. How should we design it to get the 
"best" data? This is an important question since a new facility can cost a hundred 
million dollars or more, and even a single spectrometer can cost a million or two! 

Silver, Sivia, and Pynn (1989) have addressed this question from a heuristic 
viewpoint and have also suggested a quantitative answer based on elementary signal- 
to-noise ratio arguments from a power-spectrum error analysis. They posed the fol- 
lowing question: Given that the neutron-scattering data are usually a blurred and 
noisy version of the scattering law we want, what are the optimal characteristics of 
the instrumental resolution (blurring) function? Conventional wisdom suggests that 
the most important characteristic of the resolution function is its width: the wider the 
resolution function, the poorer the quality of the data in the sense that it is more dif- 
ficult to determine reliably the underlying scattering law. Such thinking is based on a 
visual, or "what-you-see-is-what-you-get," consideration of the data. A more formal 
analysis based on statistical inference, or image processing, leads to the conclusion 
that the overall shape of the resolution function is more important than its width. 

We now outline the formal Bayesian approach to the question of instrument 
design; the algebra is presented in Sivia (1990). We will cast the problem in the 
same way as did Silver et al. and arrive at the same results; what we add here is the 
Bayesian rationale for their results. The real advantage of the Bayesian approach is 
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(a) Inelastic Scattering Data for Iron 
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(b) MaxEnt Reconstruction 
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Bayesian Inductive Inference.. . 

TWO-CHANNEL DECONVOLUTION 
OF INELASTIC-NEUTRON- 
SCATTERING DATA 

Fig. 13. Application of the two-channel entropy 

algorithm to the inelastic-neutron-scattering 

data for iron shown in (a) (Yethiraj et al. 1990) 

yields the deconvolved "signal" channel 

shown in (b). Transformation of the lines in 

(b) to the physically meaningful coordinates of 

energy transfer and Oparallei (the component 

of the momentum transfer parallel to the 

Incident neutron beam) reveals both branches 

of a magnon and some phonons (c). 

Intensity 

Magnon Branches 

80 - 

- 

40 - Phonons 
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(a) Test Scattering Law (b) Resolution Functions 

(c) MaxEnt Reconstructions 

x 

(d) Fourier Transforms of Resolution Functions 

THE FIGURE-OF-MERIT PROBLEM: 
RESOLUTION FUNCTIONS 
WITH THE SAME FWHM 

Fig. 14. Application of the maximum entropy 

method to data sets obtained by convolving 

the test scattering law in (a) with one or 

the other of the two resolution functions in 

(b) yields the reconstructions shown in (c). 

Both resolution functions have the same full 

width at half maximum (FWHM) and the same 

integrated intensity and hence have the same 

conventional figure of merit. Nevertheless, 

the reconstruction corresponding to the 

sharp-edged resolution function more nearly 

matches the original scattering law than 

does the reconstruction corresponding to the 

Gaussian resolution function. Also shown, in 

(d), is the Fourier transform of each resolution 

function. As discussed in the text, the Fourier 

transform of a resolution function, and not its 

full width at half maximum, is most relevant 

to defining a versatile figure of merit. 

its generality; an almost identical analysis can be used to address questions about 
experimental design in many other contexts (not just convolutions). Moreover, our 
conclusions are relevant not only to neutron-scattering experiments but also to any 
other type of experiment involving some element of an instrumental resolution. 

The first step in any data analysis is the formulation of the precise question we 
wish to answer. Formally, we must define the space of possible answers, or choose 
the hypothesis space. In the case of neutron scattering, we may say that we wish to 
know the scattering law of our sample, but how is the scattering law to be described? 
If we know (or assume) that the scattering law consists of a single Lorentzian, for 
example, then we have a three-dimensional hypothesis space defined by the position, 
height, and width of the Lorentzian. If, on the other hand, we have no functional 
form for the scattering law, then we might digitize it into a large number M of pix- 
els, whereupon we have an M -dimensional hypothesis space defined by the flux in 
each pixel. However, the fact that our best estimate of the scattering law depends not 
only on the data but also on our choice of hypothesis space limits our ability to pro- 
vide a universal figure of merit for instrument design. Nevertheless, we will be able 
to suggest at least a versatile figure of merit, one that is meaningful for many types 
of problems. But first let's analyze the problem using Bayesian logic. 

Once we have chosen the hypothesis space, we can assign a probability distri- 
bution over it to indicate our relative beliefs in the various possible scattering laws. 
The assignment we make before conducting the experiment is, of course, the prior, 
and Bayes' theorem tells us how the prior is modified by the experimental data, 
through the likelihood function, to yield the posterior. We also know that the position 
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(a) Simulated Data (Narrow Gaussian) 

x 

(c) MaxEnt Reconstruction (Narrow Gaussian) 

(b) Simulated Data (Wide Gaussian) 

x 

(d) MaxEnt Reconstructrion (Wide Gaussian) 

s 
-. 10,000 Times More Counts 

-. 100 Times More Counts :: / . . 

of the maximum in the posterior gives us our best estimate of the scattering law and 
that the width, or spread, of the bump in the posterior around the maximum gives us 
a measure of the reliability of our estimate. Both, of course, depend on our choice of 
hypothesis space and on our assignment of the prior probability distribution, but they 
also depend on the data. The question of how to optimize instrument design can thus 
be stated as follows: How should we choose the instrumental parameters so that the 
resulting data give us the most reliable estimate of the scattering law? 

Since Bayes' theorem tells us that the data affect our estimate of the scattering 
law only through the likelihood function, we need to look at its sharpness, or spread. 
The sharper the likelihood function, the greater the "information content" of the ex- 
periment in the sense that the data impose a more severe constraint on what the scat- 
tering law could be. 

Let us begin by considering a very simple situation. Suppose we know that the 
scattering law consists of a single delta-function excitation, A6(x - xo), of known 
magnitude A and unknown postion xo. In other words, we have a one-dimensional 
hypothesis space defined by XO. Suppose also that the experimental data are the re- 
sult of a convolution between this scattering law and a Gaussian resolution function 
T exp(-x2/2w2). The height T of this Gaussian resolution function is determined 
by the length of time for which the data are collected, and its width w is some func- 
tion of the instrumental parameters, such as flight-path length and collimation angle. 
The question now is: What restrictions do the data impose on the value of xo? The 
width of the likelihood bump, viewed in the one-dimensional space of XQ, gives us 
the uncertainty in XQ, 6x0, allowed by the data. After some algebra we find that 6x0 
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THE FIGURE-OF-MERIT PROBLEM: 
RESOLUTION FUNCTIONS 
OF SIMILAR SHAPE 

Fig. 15. Shown in (a) and (b), respectively, 

are noisy data obtained by convolving the 

scattering law shown in Fig. 14a with a narrow 

Gaussian resolution function and another 

Gaussian resolution function ten times wider. 

Deconvolution of (a) and (b) yields (c) and the 

dashed curve in (d), respectively. Also shown 

in (d) are deconvolutions of data sets with 100 

times (solid curve) and 10,000 times (dotted 

curve) the number of counts shown in (b). 

Contrary to conventional wisdom, increasing 

the number of data by a factor of 100 does 

not compensate (in terms of recovering sharp 

structure) for an increase in FWHM by a factor 

of 10. 
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A LIKELIHOOD FUNCTION 
IN A TWO-DIMENSIONAL 
HYPOTHESIS SPACE 

Fig. 16. Suppose that the scattering law of 

interest is characterized by specific values of 

only two parameters, A and XQ. (An example 

of such a scattering law is a delta function 

of unknown amplitude and position.) The 

likelihood function Pr({data} [A, xo) is then a 

bump in a twodimensional hypothesis space. 

Shown here schematically in that hypothesis 

space are contours along which the logarithm 

of Pr({data} [A, xo) is constant. The shape 

of the likelihood function can be described 

either by a covariance matrix or by the 

eigenvectors and eigenvalues of the logarithm 

of the likelihood function. The elements of 

the covariance matrix tells us the expected 

uncertainties allowed by the data in our 

estimates of A and a and how our estimate 

of one affects our estimate of the other. The 

eigenvectors, which specify the directions of 

the principal axes of the likelihood bubble, tell 

us which properties, or linear combinations, 

of A and xo can be determined independently. 

The eigenvalues, which are proportional to 

the widths of the likelihood function in the 

directions of the eigenvectors, tell us how 

reliably each independent property can be 

estimated. 

Maximum Likelihood Solution 

Princi~al Axes 

depends on the instrumental design, enshrined in the resolution-function parameters T 
and w, in the following manner: ( ( 6 x 0 ) ~ )  oc W I T .  The inverse of this quantity can be 
used as a figure of merit and has been quoted in the neutron-scattering literature: 

Total Number of Neutrons T 
Conventional Figure of Merit = ;, 

where FWHM is the full width of the resolution function at half maximum and the 
total number of neutrons detected is proportional to Tw. 

We now show, by means of the examples presented in Figs. 14 and 15, that, al- 
though the conventional figure of merit is the correct answer to the question posed 
above, it is quite unsuitable for general use. Figure 14 presents the MaxEnt recon- 
structions derived from two data sets obtained by convolving a test object with one 
or the other of two resolution functions. Even though the resolution functions have 
identical figures of merit according to the equation above, the reconstruction from the 
data set obtained by convolution with the sharp-edged resolution function is clearly 
far superior to the reconstruction from the data set obtained by convolution with the 
Gaussian resolution function. But the figure of merit above was based on a Gaussian 
resolution function, you might complain, and so is not valid here. Figure 15 coun- 
ters that argument by showing the MaxEnt reconstructions derived from two data sets 
obtained by convolving a test object with one or the other of two Gaussian functions 
whose FWHMs differ by a factor of 10. According to conventional thinking, the fig- 
ures of merit can be equalized by increasing the total number of counts for the wide 
Gaussian by a factor of 100. But Fig. 15 shows instead that, to recover the sharpest 
features, the number of neutrons counts must be increased by many orders of magni- 
tude! 

Next, we move on to consider a slightly more complicated case. Let the situ- 
ation be exactly the same as before, except that now the scattering law is known to 
consist of a single delta function of not only unknown position but also unknown 
magnitude. That is, we have a two-dimensional hypothesis space, defined by the 
magnitude A and position XQ of the delta function. Again, we want to know what re- 
strictions the data impose on the value of A and XQ.  The likelihood function is now a 
bump in a two-dimensional space, as illustrated schematically in Fig. 16. To describe 
the shape of this probability bubble, we need at least three numbers: two for the 
width in each of the two dimensions and one for the orientation. One way of spec- 
ifying these numbers is to give the so-called covariance matrix, a symmetric 2 x 2 
matrix whose elements tell us the expected uncertainty in the position, ( ( & Q ) ~ ) ,  the 
expected uncertainty in the magnitude, ((a2)), and how the uncertainty in one af- 

Los Alamos Science Summer 1990 



Bayesian Inductive Inference.. . 

fects the uncertainty in the other, (6xo6A). After doing some algebra, we find that the 
correlation term is zero, (6x06A} = 0. In other words, the reliability with which we 
can estimate the position of the delta function has no bearing on the reliability with 
which we can estimate its magnitude. Thus, in terms of the general schematic picture 
of Fig. 16, the principal axes of the likelihood probability bubble should lie along the 
A and XQ directions. We also find that the instrumental parameters T and w affect the 
reliability of the inferred magnitude and position of the delta function as follows: 

((6x0)~) oc w /T and ( ( 6 ~ ) ~ )  cx 1 /Tw . 

This raises a fundamental question: What do we mean by a figure of merit? The 
formulae above say that to improve our estimate of the position of the delta function, 
we should make the width of the Gaussian resolution function as narrow as possible, 
but to improve our estimate of its magnitude, we should make the resolution function 
as wide as possible! 

We can, of course, keep working through specific problems, but we will only 
come up with the conclusion that different questions, or different choices of hypoth- 
esis space, have different answers. So let us try to ask a generalized question. We 
accept that it will not give the exact answer in every specific case but hope that it 
will yield a sensible figure of merit for a wide range of situations. 

Let us say that the experimental parameters (moderator material, moderator tem- 
perature, flight-path length, collimation angle, and so on) all combine to give some 
resolution function R(x) (not necessarily Gaussian). The question we will ask is: 
Given that the data are the result of a convolution between the sample scattering law 
S(x) and the resolution function R(x), how reliably can we estimate the scattering 
law assuming no particular functional form for S(x)? 

Since we do not have a functional form for the scattering law, as we did before, 
an obvious hypothesis space to choose is the one defined by the values of S (x) spec- 
ified on a grid finely digitized in x. That is, we have an M -dimensional hypothesis 
space, where M is very large. The likelihood function is now a bump in a multi- 
dimensional space, and we can consider Fig. 16 as a schematic two-dimensional slice 
through that space if the axis labels are changed to read S (xi) and S (xj) instead of 
A and XQ. The spread of this multi-dimensional probability bubble about its maxi- 
mum will, of course, give us a measure of how well the data constrain the permis- 
sible scattering laws. However, since the likelihood bubble is, in general, skew with 
respect to our {S(xj)} axes, its width is difficult to describe. It is convenient, there- 
fore, to rotate our coordinate axes from the original {S(xj)} axes to another set of 
axes that lie along the principal axes of the probability bump; the spread of the bub- 
ble is then given simply by its widths along the new coordinate axes. These principal 
axes are vectors in the coordinates {S(xj)} and hence represent relative pixel heights 
in our digitized x coordinate-they are discretized functions of x. Formally, the prin- 
cipal axes are called eigenvectors or, if we go to the continuum limit by making the 
digitized grid infinitesimally fine, eigenfunctions . 

The eigenfunctions define the natural hypothesis space for our problem because 
they represent the properties of the scattering law that can be estimated independently 
of each other. If we write the required scattering law as a linear combination of the 
eigenfunctions, S(x) = aj%(x), where vj(x) are the eigenfunctions and a, are co- 
efficients (or parameters) that are now to be determined from the data, then we find 
that the reliability of our estimate of one parameter does not affect the reliability of 
our estimate of another; that is, the covariance matrix is diagonal ((6ai6aj) = 0). The 
widths of the likelihood function along the principal directions, 6aj, tell us the relia- 
bility with which the eigenfunction properties of the scattering law can be estimated; 
the widths are related to the so-called eigenvalues A by ((6aj)2) = 2/Aj. 
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RESPONSE MATCHING 

Fig. 17. The resolution function R(x) appro- 

priate to a neutron-scattering experiment at 

a spallation source is a convolution (8) of 

two response functions: the moderator line 

shape and an instrumental contribution. The 

moderator line shape (the time spectrum of 

neutrons exiting the moderator) has a sharp 

leading edge, which can be regarded as the 

rising edge of a narrow Gaussian with a 

FWHM, ~ ~ ~ d ~ ~ ~ ~ ~ ~ ,  determined by the mod- 

erator material, and a long tall that decays 

roughly exponentially with a decay constant 

r determined by the "poison" added to the 

moderator. The instrumental contribution is 

roughly Gaussian with a FWHM of Uinstmment- 

The analysis presented in the text indicates 

that uinstrument should probably be matched 

to umo~erator (rather than to the FWHM of the 

moderator line shape as a whole) to obtain 

the "best" FKx}. 

x x 
Moderator Line Shape Instrumental Contribution 

If we were to carry out the algebra for our problem, making suitable (usually 
reasonable) assumptions to obtain an analytic solution, we would find that the eigen- 
functions vu(x) and their corresponding eigenvalues Xu are given by 

qu(x) = cos(wx) and sin(wx) 

where k(w) is the Fourier transform of the resolution function R(x) and d is a mea- 
sure of the average number of counts in the data. This solution tells us that if we do 
not have a functional form for the scattering law, then we should express it in terms 
of a Fourier series (a sum of sine and cosine functions). The advantage of doing so 
is that the reliability with which we can estimate one Fourier coefficient will not af- 
fect the accuracy with which we can determine another-it is an uncorrelated space. 
Since the reliability with which we can estimate any Fourier coefficent is inversely 
proportional to the corresponding eigenvalue, ( ( 6 ~ ~ ) ~ )  = 2/Xu, we can use Xu as a 
figure of merit for inferring structure in the scattering law with detail 6x w l/w. 

The implications of this analysis for instrument design are as follows. 

A versatile figure of merit depends largely on the Fourier transform of the res- 
olution function rather than on its full width at half maximum. This result is 
illustrated in Fig. 14: The two resolution functions in Fig. 14b have the same 
full width at half maximum and the same integrated intensity, but, as shown in 
Fig. 14d, the Fourier transform of the one with the sharp edge does not decay 
as rapidly with increasing frequency w as the Fourier transform of the Gaussian 
resolution function. Resolution functions that have sharp features, therefore, al- 
low high-frequency information to be recovered reliably from the data. An elec- 
trical engineer would say that the figure of merit is governed by the bandwidth 
of the resolution function. - 

The figure of merit for a given resolution function is not constant but depends 
on the amount of detail required in the inferred scattering law. 
The background signal has not been forgotten; it enters the figure of merit 
through the dependence on average number of counts, or u2. Any long decay- 
ing tail of the resolution function reduces the figure of merit in the same way 
that the background does, since such a tail adds to the average number of counts 
but does not contribute to the Fourier term R(w) at high frequency. 
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Since the resolution function in neutron scattering depends on details of the 
spectrometer and moderator, our results suggest a potential revision of ideas on the 
design of neutron-scattering facilities. Take, for example, the matching of resolution 
elements on a neutron spectrometer at an accelerator-based source, which is illus- 
trated in Fig. 17. The resolution function for an experiment is the resultant of a con- 
volution between a roughly Gaussian instrumental contribution (flight-path length, 
collimation angle, and so on), and the moderator line shape (the time spectrum of the 
pulse of neutrons leaving the moderator). The moderator line shape has a sharp ris- 
ing edge, the sharpness of which is governed by the moderator material, and a long 
decaying tail, the decay of which is governed by the "poison" added to the modera- 
tor. The question is how to choose the width of the instrumental component so as to 
get the "best" resultant resolution function. Conventional wisdom recommends that 
we should make the width of the Gaussian-like instrumental contribution comparable 
to the width of the moderator line shape. The analysis above, however, suggests that 
following this advice could seriously impair our ability to infer (reliably) the scatter- 
ing law at high resolution and that we should probably match the width of the instru- 
mental component to the narrow width of the sharp leading edge of the moderator 
line shape. How such considerations translate into the optimal choice of collimation 
angle, of flight-path length, of moderator material, and of a moderator "poison" is the 
subject of ongoing research. i 
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